Carbon capture and storage (CCS) is gaining interest as a significant global option to reduce emissions of CO2. CCS development requires an assessment of the potential risks associated with CO2 leakages from storage sites. Laboratory leaching tests have proved to be a useful tool to study the potential mobilization of metals from contaminated sediment in a decreased-pH environment that mimics such a leakage event. This work employs a self-organizing map (SOM) tool to interpret and analyze the release of dissolved organic carbon (DOC), As, Cd, Cr, Cu, Ni, Pb, and Zn from equilibrium, column, and pH-dependent leaching tests. In these tests, acidified seawater is used for simulating different CO2 leakage scenarios. Classification was carried out detailing the mobilization of contaminants for environments of varying pH, liquid-to-solid ratio, and type of contact of the laboratory leaching tests. Component planes in the SOMs allow visualization of the results and the determination of the worst case of element release. The pH-dependent leaching test with initial addition of either base or acid was found to mobilize the highest concentrations of metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-015-4970-z | DOI Listing |
Inorg Chem
January 2025
Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.
Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFChemosphere
January 2025
University of Rzeszow, Institute of Food Technology and Nutrition, Zelwerowicza 4, 35-601, Rzeszow, Poland.
The hunting of waterfowl may contribute significantly to environmental contamination through the leaching of highly toxic elements (As, Pb, Sb) from spent gunshot deposited on hunting grounds. It is therefore clearly necessary to develop a biogeochemical protocol that might decipher the fate of spent gunshot in the environment. In that context, we present a study that follows the laboratory simulation approach and discusses the methodical pros and cons of the protocol.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Hubei Three Gorges Laboratory, Yichang 443000, China.
With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
Introduction: Diabetes mellitus often leads to bone metabolism disorders, hindering bone regeneration and delaying the healing of bone defects. β-Ecdysone, a plant-derived hormone known for its wide range of physiological activities, possesses hypoglycemic effects and promotes osteogenic differentiation. This study developed a composite PLGA slow-release scaffold loaded with β-ecdysone to enhance its bioavailability through topical administration and to investigate its potential to heal diabetic bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!