In the last series of papers published during 1975 to 1980, Alfred Yarbus tried to formulate general conceptions concerning the basic principles of retinal image processing in the human visual system. The original ideas of Yarbus were based on the results of his numerous and various experiments carried out with extraordinary inventiveness and great skill. Being concentrated primarily on the problems of color vision, Alfred Yarbus dreamed of elaborating a comprehensive model that would simulate visual information processing at the monocular precognitive level in the visual system of humans with normal trichromatic color perception. In this article, the most important of Yarbus' experimental paradigms, findings, statements, and conclusions are systematized and considered in relation to the classical theories of color perception and, in particular, fundamental theses of the Nyberg school. The perceptual model developed by Alfred Yarbus remained incomplete. Nevertheless, it is already evident that some intrinsic contradictions make it inadequate in terms of comprehensive modeling. However, certain partial advantages deserve more thorough appreciation and further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0301006615594964 | DOI Listing |
Sensors (Basel)
December 2024
Department of Management and Industrial Engineering, University of Petrosani, 332003 Petrosani, Romania.
Currently, the automotive sector is showing increased demands regarding the color of cars in general, but especially the quality and the time of painting, in particular. Companies working in this industry, especially in specialized painting services, must perform work of impeccable quality in the shortest possible time in order to be efficient. Color differences that appear in different areas of the car result from the use of different formulas for obtaining color.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
Mycomaterials are biomaterials made by inoculating a lignocellulosic substrate with a fungus, where the mycelium acts as a binder and enhances material properties. These materials are well suited as sustainable alternatives to conventional insulation materials thanks to their good insulation properties, low density, degradability, and fire resistance. However, they suffer from mold contamination in moist environments and poor perception ("organic" appearance).
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
This study investigates the Chinese market's physicochemical properties and sensory attributes of 14 original-cut potato chip brands. Color characteristics, compositional analysis, sugar content, acrylamide levels, and textural properties were examined alongside sensory evaluations. Significant variations were observed across all the parameters.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Technology and Quality Assessment, School of Public Health in Bytom, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
Background/objectives: This study explores the significance of beetroot and tomato juices, two prominent health-promoting foods known for their rich nutrient content and bioactive compounds. The growing consumer awareness of the link between diet and well-being emphasizes the need for food producers to align their products with health-conscious preferences. The aim of this research was to assess the composition, color, and sensory attributes-specifically color, taste, and odor-of various commercially available beetroot and tomato juices and to evaluate their acceptability among consumers.
View Article and Find Full Text PDFFoods
December 2024
IPREM, Institut des Sciences Analytiques et de Physicochimie Pour L'environnement et les Matériaux, UMR 5254, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, Helioparc, 2 Avenue President Angot, 64053 Pau, CEDEX 9, France.
Tea is one of the most consumed beverages in the world and presents a great aromatic diversity depending on the origin of the production and the transformation process. Volatile organic compounds (VOCs) greatly contribute to the sensory perception of tea and are excellent markers for traceability and quality. In this work, we analyzed the volatile organic compounds (VOCs) emitted by twenty-six perfectly traced samples of tea with two analytical techniques and two data treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!