Purpose: To compare the real-time visualization of vitreoretino-choroidal structures using full-depth imaging (FDI) spectral domain optical coherence tomography (SD-OCT) and swept-source (SS)-OCT.
Methods: Foveal scans using both FDI SD-OCT (Heidelberg Spectralis) and SS-OCT (Topcon Deep Range Imaging-OCT-1) were obtained in 40 normal eyes, 40 eyes with macular pathologies, and 40 eyes with glaucoma. Full-depth imaging SD-OCT images were obtained by manually enhancing the vitreoretinal interface first and then the choroid while averaging each OCT B-scan 100 times. Swept-source-OCT images were obtained by averaging each B-scan 96 times. After masking and randomly mixing the original OCT images, two independent physicians graded visualization of the premacular bursa, interdigitation zone line, and chorioscleral boundary, and also sharpness of choroidal structures.
Results: A real-time full-depth image of vitreoretino-choroidal structures was successfully achieved with FDI SD-OCT in 118 cases (98.3%) and with SS-OCT in 45 cases (37.5%, P < 0.001). Full-depth imaging SD-OCT imaging was superior to SS-OCT imaging in visualizing the anterior border of the premacular bursa in 109 eyes (90.8%), with average grading of 1.63 ± 0.53 for the FDI SD-OCT and 0.39 ± 0.52 for the SS-OCT (P < 0.001). Swept-source-OCT was similar to FDI SD-OCT in visualizing the chorioscleral boundary in 108 eyes (90.0%), with average grading of 1.81 ± 0.39 for the SS-OCT and 1.78 ± 0.38 for the FDI-OCT (P = 0.566). The visualization of the interdigitation zone line was identical in the 2 imaging instruments (P = 1.000). The sharpness of the choroidal structures was greater with SS-OCT than with FDI-OCT (P < 0.001).
Conclusion: Manual double-enhancing FDI technique using SD-OCT provided a good compromise between vitreous and retinochoroidal structures visualization in real time during scanning procedure. In contrast, SS-OCT imaged well details of choroidal sublayers. Appropriate OCT technology and software should be selected according to its application in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864215 | PMC |
http://dx.doi.org/10.1097/IAE.0000000000000842 | DOI Listing |
Epileptic Disord
December 2024
Department of Neurology, Duke University Hospital, Durham, North Carolina, USA.
Objective: The aim of this paper was to visualize 3-dimensional (3-D) brain and electrode placement data for epilepsy surgery within an augmented reality (AR) environment using a wearable headset, with the ultimate goal of enhancing presurgical planning for epilepsy surgery and understanding the efficiency and utility of such a program in a clinical setting. The evaluation process for surgical intervention in epilepsy cases involves a series of extensive tests, including EEG, MRI, PET, SPECT, and fMRI. A second phase of assessment incorporates the placement of depth electrodes within the brain to record seizure activity.
View Article and Find Full Text PDFBiomed Opt Express
August 2024
Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden.
Partial-thickness burn wounds extend partially through the dermis, leaving many pain receptors intact and making the injuries very painful. Due to the painfulness, quick assessment of the burn depth is important to not delay surgery of the wound if needed. Laser speckle imaging (LSI) of skin blood flow can be helpful in finding severe coagulation zones with impaired blood flow.
View Article and Find Full Text PDFLab Chip
September 2024
Pre-Clinical Sciences, Research Technologies, GSK, Stevenage, UK.
A liver-on-a-chip model is an advanced complex model (CIVM) that incorporates different cell types and extracellular matrix to mimic the microenvironment of the human liver in a laboratory setting. Given the heterogenous and complex nature of liver-on-a-chip models, brightfield and fluorescence-based imaging techniques are widely utilized for assessing the changes occurring in these models with different treatment and environmental conditions. However, the utilization of optical microscopy techniques for structural and functional evaluation of the liver CIVMs have been limited by the reduced light penetration depth and lack of 3D information obtained using these imaging techniques.
View Article and Find Full Text PDFObjective: The key characteristics of light propagation are the average penetration depth, average maximum penetration depth, average maximum lateral spread, and average path length of photons. These parameters depend on tissue optical properties and, thus, on the pathological state of the tissue. Hence, they could provide diagnostic information on tissue integrity.
View Article and Find Full Text PDFJ Neurophysiol
May 2024
Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!