In this study, we demonstrate how functional groups on the surface of mesoporous silica nanoparticles (MSNPs) can influence the encapsulation and release of the anticancer drug doxorubicin, as well as cancer cell response in the absence or presence of serum proteins. To this end, we synthesized four differently functionalized MSNPs with amine, sulfonate, polyethylene glycol, or polyethylene imine functional surface groups, as well as one type of antibody-conjugated MSNP for specific cellular targeting, and we characterized these MSNPs regarding their physicochemical properties, colloidal stability in physiological media, and uptake and release of doxorubicin in vitro. Then, the MSNPs were investigated for their cytotoxic potential on cancer cells. Cationic MSNPs could not be loaded with doxorubicin and did therefore not show any cytotoxic and antiproliferative potential on osteosarcoma cells, although they were efficiently taken up into the cells in the presence or absence of serum. In contrast, substantial amounts of doxorubicin were loaded into negatively charged and unfunctionalized MSNPs. Especially, sulfonate-functionalized doxorubicin-loaded MSNPs were efficiently taken up into the cells in the presence of serum and showed an accelerated toxic and antiproliferative potential compared to unfunctionalized MSNPs, antibody-conjugated MSNPs, and even free doxorubicin. These findings stress the high importance of the surface charge as well as of the protein corona for designing and applying nanoparticles for targeted drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b09483 | DOI Listing |
Sci Rep
January 2025
Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
This study investigates how biogenic mesoporous silica nanoparticles (MS-NPs) extracted from rice straw residues, a sustainable and economical bio-source, affect White Ordinary Portland Cement (WOPC) paste performance. A comprehensive investigation using varied fractions of 0.25, 0.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Experimental Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.
Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.
Macromol Rapid Commun
November 2024
The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R China.
Amphiphilic magnetic-responsive mixed-shell nanoparticles (Mag-MSNPs) with tailorable compositions are synthesized by electrostatic-mediated cross-linking of core-forming blocks of two diblock copolymers, followed by in situ growth of magnetite in the cross-linked core. The Mag-MSNPs have a magnetic-responsive core and hydrophilic/lipophilic mixed shells, firmly anchoring at the oil-water interface of emulsified oil droplets due to their high interfacial activity (13.1 mN m at a rather low emulsifier concentration of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!