A regioselective dearomative aza-(3 + 2) cycloaddition reaction of substituted indoles with α-halohydroxamates has been developed. This transformation provides rapid access to highly functionalized pyrroloindolines that are represented in large number of bioactive compounds. The natural product, physostigmine, has been concisely synthesized utilizing this method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b10184DOI Listing

Publication Analysis

Top Keywords

dearomative indole
4
indole cycloaddition
4
cycloaddition reactions
4
reactions aza-oxyallyl
4
aza-oxyallyl cationic
4
cationic intermediates
4
intermediates modular
4
modular access
4
access pyrroloindolines
4
pyrroloindolines regioselective
4

Similar Publications

Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp)-H bond activation.

Nat Commun

December 2024

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.

View Article and Find Full Text PDF

Organo-photocatalytic dearomative hydrosilylation of indoles with silanes.

Org Biomol Chem

December 2024

College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) 266580, Qingdao, P. R. China.

A photocatalytic dearomative hydrosilylation reaction of indole derivatives with silanes has been accomplished for the synthesis of valuable indolinyl silanes through a carbon-silyl radical coupling process with the cooperation of photoredox and hydrogen atom transfer catalytic systems composed of 3DPA2FBN (2,4,6-tris(diphenylamino)-3,5-difluorobenzonitrile), (i-Pr)SiSH, and base additives. This protocol is featured by a broad substrate scope, transition metal-free conditions, high diastereoselectivities and applications in natural product derivatives.

View Article and Find Full Text PDF

We herein report the serendipitous discovery of the interrupted Plancher rearrangement initiated by an HFIP-promoted dearomative epoxide-indole cyclization, unlocking a new blueprint to the formal C3 umpolung reactivity of indoles. This rapid complexity generating cascade process paves the way toward a new class of fused-bridged indolines in high yields and under full regio- and diastereocontrol. The reaction is amenable to a wide range of substituents in the starting materials.

View Article and Find Full Text PDF

Alkene Carboxy-Alkylation via CO

J Am Chem Soc

December 2024

Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.

Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO via hydrogen atom transfer from formate.

View Article and Find Full Text PDF

Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!