Analysis of PVC plasticizers in medical devices and infused solutions by GC-MS.

J Pharm Biomed Anal

CHU Clermont-Ferrand, Pôle Pharmacie, Rue Montalembert, 63003 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4676C-BIOSENSS, 63000 Clermont-Ferrand, France.

Published: January 2016

In 2008, di-(2-ethylhexyl) phthalate (DEHP), was categorized as CMR 1B under the CLP regulations and its use in PVC medical devices (MD) was called into question by the European authorities. This resulted in the commercialization of PVC MDs plasticized with the DEHP alternative plasticizers tri-octyl trimellitate (TOTM), di-(2-ethylhexyl) terephthalate (DEHT), di-isononyl cyclohexane-1,2-dicarboxylate (DINCH), di-isononyl phthalate (DINP), di-(2-ethylhexy) adipate (DEHA), and Acetyl tri-n-butyl citrate (ATBC). The data available on the migration of these plasticizers from the MDs are too limited to ensure their safe use. We therefore developed a versatile GC-MS method to identify and quantify both these newly used plasticizers and DEHP in MDs and to assess their migration abilities in simulant solution. The use of cubic calibration curves and the optimization of the analytical method by an experimental plan allowed us to lower the limit of plasticizer quantification. It also allowed wide calibration curves to be established that were adapted to this quantification in MDs during migration tests, irrespective of the amount present, and while maintaining good precision and accuracy. We then tested the developed method on 32 PVC MDs used in our hospital and evaluated the plasticizer release from a PVC MD into a simulant solution during a 24h migration test. The results showed a predominance of TOTM in PVC MDs accompanied by DEHP (<0.1% w/w), DEHT, and sometimes DEHA. The migration tests showed a difference in the migration ability between the plasticizers and a non-linear kinetic release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2015.10.034DOI Listing

Publication Analysis

Top Keywords

pvc mds
12
medical devices
8
simulant solution
8
calibration curves
8
mds
6
pvc
5
analysis pvc
4
plasticizers
4
pvc plasticizers
4
plasticizers medical
4

Similar Publications

Background: Asbestos exposure can lead to asbestos-related diseases. The European Union (EU) has adopted regulations for workplaces where asbestos is present. The EU occupational exposure limit (OEL) for asbestos is 0.

View Article and Find Full Text PDF
Article Synopsis
  • Medical devices often use plasticized polyvinylchloride (PVC), but plasticizers can leach into solutions, posing a toxic risk to patients.
  • The study aims to fluorinate PVC medical devices to create a barrier that limits plasticizer migration, and the process successfully formed C-F bonds without changing the devices' mechanical or optical properties.
  • Testing showed that plasticizer migration from the fluorinated devices was significantly reduced and remained below detectable levels after 24 hours, with no cytotoxic effects observed on cells tested.
View Article and Find Full Text PDF

Background: The treatment of relapsed or refractory leukemia remains a major problem. Among the new therapeutic approaches, the use of modified T lymphocytes, called chimeric antigen receptor T cells (CAR-T cells), seems promising. The first step of their preparation is leukapheresis, which involves the collection of mononuclear cells from the patient.

View Article and Find Full Text PDF

Bis(2-ethylhexyl) phthalate (DEHP) migration from polyvinyl chloride (PVC) has been studied with infusion, transfusion and extracorporeal oxygenation devices, but no study has been conducted to estimate its migration via respiratory medical devices (MDs). This work aims to develop an ex vivo model to quantify DEHP released doses by these MDs, which will then be used to estimate newborns DEHP exposure from respiratory assistance MDs. We followed the Frensh National Research and Safety Institute (INRS) recommendations for the validation of a collecting and analysing method of DEHP in air, which will be used to quantify DEHP in air passing through PVC respiratory assistance MDs.

View Article and Find Full Text PDF

Aberrant metabolism of cancer cells is well appreciated, but the identification of cancer subsets with specific metabolic vulnerabilities remains challenging. We conducted a chemical biology screen and identified a subset of neuroendocrine tumors displaying a striking pattern of sensitivity to inhibition of the cholesterol biosynthetic pathway enzyme squalene epoxidase (SQLE). Using a variety of orthogonal approaches, we demonstrate that sensitivity to SQLE inhibition results not from cholesterol biosynthesis pathway inhibition, but rather surprisingly from the specific and toxic accumulation of the SQLE substrate, squalene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!