A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms. | LitMetric

AI Article Synopsis

  • Pharmaceuticals and personal care products (PPCPs) are new pollutants affecting aquatic ecosystems, causing sublethal effects in non-target species despite low concentrations.
  • An in vitro enzyme trial examined carboxylesterase (CE) activity in various fish species and a crustacean, revealing significant inhibition of this enzyme by specific PPCPs like simvastatin and fenofibrate, as well as personal care products like nonylphenol and triclosan.
  • The findings indicate that fish CE activity is similarly sensitive to certain PPCPs compared to mammals, suggesting the enzyme might act as a molecular sink for these pollutants.

Article Abstract

Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2015.11.001DOI Listing

Publication Analysis

Top Keywords

carboxylesterase activity
8
activity aquatic
8
aquatic organisms
8
personal care
8
care products
8
activity
7
ppcps
6
fish
5
vitro screening
4
screening emerging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!