The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater.

J Hazard Mater

College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, PR China. Electronic address:

Published: March 2016

The zero-valent iron permeable reactive barrier (ZVI-PRB) is a promising technology for in-situ groundwater remediation. However, its long-term performance often declined due to the blocked reactive sites by corrosion products and by interference of co-existing solutes. In order to address these issues, a pillared bentonite (Al-bent) was homogeneously mixed with ZVI for removing selenate (Se(VI)) from simulated groundwater in column experiments. The Se(VI) removal was enhanced because first Al-bent could facilitate the mass transfer of Se(VI) from solution to iron surface and accelerate Se(VI) reduction. XANES analysis indicated that Se(VI) was almost completely reduced to Se(0) and Se(-II) of less toxicity and solubility by the ZVI/Al-bent mixture, and the buffering effect of Al-bent could maintain the pH at a lower level that favored the Se(VI) removal. Besides, Al-bent could transfer the corrosion products away from iron surface, leading to the enhanced reactivity and longevity of ZVI. The inhibition on reactivity towards Se(VI) in both the single ZVI and the ZVI/Al-bent systems increased in the order of Cl(-)

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2015.10.072DOI Listing

Publication Analysis

Top Keywords

sevi removal
12
pillared bentonite
8
sevi
8
co-existing solutes
8
corrosion products
8
iron surface
8
roles pillared
4
bentonite enhancing
4
enhancing sevi
4
zvi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!