Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mosaics are widely used for surface decoration to produce appealing visual effects. We present a method for synthesizing digital surface mosaics with irregularly shaped tiles, which are a type of tiles often used for mosaics design. Our method employs both continuous optimization and combinatorial optimization to improve tile arrangement. In the continuous optimization step, we iteratively partition the base surface into approximate Voronoi regions of the tiles and optimize the positions and orientations of the tiles to achieve a tight fit. Combination optimization performs tile permutation and replacement to further increase surface coverage and diversify tile selection. The alternative applications of these two optimization steps lead to rich combination of tiles and high surface coverage. We demonstrate the effectiveness of our solution with extensive experiments and comparisons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2015.2498620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!