Yb³⁺/Er³⁺-Codoped Bi₂O₃ Nanospheres: Probe for Upconversion Luminescence Imaging and Binary Contrast Agent for Computed Tomography Imaging.

ACS Appl Mater Interfaces

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China.

Published: December 2015

In this work, water-soluble Yb(3+)/Er(3+) codoped Bi2O3 upconversion (UC) nanospheres with uniform morphology have been successfully synthesized via a solid-state-chemistry thermal decomposition process. With 980 nm near-infrared irradiation, the Bi2O3:Yb(3+)/Er(3+) nanospheres have bright UC luminescence (UCL). Moreover, multicolor UC emissions (from green to red) can be tuned by simply changing the Yb(3+) ions doping concentration. After citric acid molecules were grafted on the surface of Bi2O3:20% Yb(3+)/2% Er(3+) nanospheres, the MTT assay on HeLa cells and CCK-8 assay on osteoblasts show that the UC nanospheres exhibit excellent stability and biocompatibility. The possibility of using these nanoprobes with red UCL for optical imaging in vivo has been demonstrated. Furthermore, Bi(3+) and Yb(3+) containing nanospheres as binary contrast agent also exhibited significant enhancement of contrast efficacy than iodine-based contrast agent via X-ray computed tomography (CT) imaging at different voltage setting (80-140 kVp), indicating they have potential as CT imaging contrast agent. Thus, Yb(3+)/Er(3+) codoped Bi2O3 nanospheres could be used as dual modality probe for optical and CT imagings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b09990DOI Listing

Publication Analysis

Top Keywords

contrast agent
16
binary contrast
8
computed tomography
8
tomography imaging
8
yb3+/er3+ codoped
8
codoped bi2o3
8
nanospheres
7
imaging
5
contrast
5
yb³⁺/er³⁺-codoped bi₂o₃
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!