DNA Triplexes That Bind Several Cofactor Molecules.

Chemistry

Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany), Fax: (+49) 711-685-64321.

Published: December 2015

Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201503220DOI Listing

Publication Analysis

Top Keywords

triplex motifs
12
binding site
8
dna triplexes
4
bind
4
triplexes bind
4
bind cofactor
4
cofactor molecules
4
molecules cofactors
4
cofactors critical
4
critical energy-consuming
4

Similar Publications

In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.

View Article and Find Full Text PDF

Noncanonical base pairs play an important role in enabling the structural and functional complexity of RNA. Molecular recognition of such motifs is challenging because of their diversity, significant deviation from the Watson-Crick structures, and dynamic behavior, resulting in alternative conformations of similar stability. Triplex-forming peptide nucleic acids (PNAs) have emerged as excellent ligands for the recognition of Watson-Crick base-paired double helical RNA.

View Article and Find Full Text PDF

Dissecting non-B DNA structural motifs in untranslated regions of eukaryotic genomes.

Genomics Inform

November 2024

Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.

The untranslated regions (UTRs) of genes significantly impact various biological processes, including transcription, posttranscriptional control, mRNA stability, localization, and translation efficiency. In functional areas of genomes, non-B DNA structures such as cruciform, curved, triplex, G-quadruplex, and Z-DNA structures are common and have an impact on cellular physiology. Although the role of these structures in cis-regulatory regions such as promoters is well established in eukaryotic genomes, their prevalence within UTRs across different eukaryotic classes has not been extensively documented.

View Article and Find Full Text PDF

Peptides are well known for forming nanoparticles, while DNA duplexes, triplexes and tetraplexes create rigid nanostructures. Accordingly, the covalent conjugation of peptides to DNA/RNA produces hybrid self-assembling features and may lead to interesting nano-assemblies distinct from those of their individual components. Herein, we report the preparation of a collagen mimetic peptide incorporating lysine in its backbone, with alkylamino side chains radially conjugated with G-rich PNA [collagen-(PNA-GGG)].

View Article and Find Full Text PDF
Article Synopsis
  • The deregulation of a specific transcription factor is key in the development of T cell acute lymphoblastic leukemia (T-ALL), mainly due to mutations in exon 4 that disrupt its DNA-binding ability.
  • The study highlights the role of Activation-induced cytidine deaminase (AID) in mutagenesis, showing that AID is present in T-ALL cells and creates distinct mutation patterns by binding to fragile regions in the DNA.
  • AID's binding leads to the formation of complex DNA structures that can cause errors during replication, ultimately resulting in harmful mutations that impair the transcription factor's function and contribute to the onset of T-ALL.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!