Key Message: Exploiting the benefits from multiple-trait genomic selection for protein content prediction relying on additional grain yield information within training sets is a realistic genomic selection approach in rye breeding.

Abstract: Multiple-trait genomic selection (MTGS) was specially designed to benefit from the information of genetically correlated indicator traits in order to improve genomic prediction accuracies. Two segregating F3:4 rye testcross populations genotyped using diversity array technology markers and evaluated for grain yield (GY) and protein content (PC) were considered. The aims of our study were to explore the benefits of MTGS over single-trait genomic selection (STGS) for GY and PC prediction and to apply GS to predict different selection indices (SIs) for GY and PC improvement. Our results using a two-trait model (2TGS) empirically confirm that the ideal scenario to exploit the benefits of MTGS would be when the predictions of a relatively low heritable target trait with scarce phenotypic records are supported by an intensively phenotyped genetically correlated indicator trait which has higher heritability. This ideal scenario is expected for PC in practice. According to our GS implementation, MTGS can be performed in order to achieve more cycles of selection by unit of time. If the aim is to exclusively improve the prediction accuracy of a scarcely phenotyped trait, 2TGS will be a more accurate approach than a three-trait model which incorporates an additional correlated indicator trait. In general for balanced phenotypic information, we recommend to perform GS considering SIs as single traits, this method being a simple, direct and efficient way of prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-015-2626-6DOI Listing

Publication Analysis

Top Keywords

genomic selection
16
grain yield
12
protein content
12
correlated indicator
12
yield protein
8
multiple-trait genomic
8
genetically correlated
8
benefits mtgs
8
ideal scenario
8
indicator trait
8

Similar Publications

Genomic Epidemiology of Strains That Caused the Fire Blight Outbreak in Korea.

Plant Dis

January 2025

50 Yonsei-ro, Seodaemun-guSeoul, Korea (the Republic of), 03722;

Fire blight, a devastating bacterial disease affecting rosaceous plants such as apples and pears, is caused by . The disease, known for its rapid spread and destructive potential, can lead to severe symptoms and often result in the death of infected plants. In Korea, the observation of was first recorded in 2015, and subsequent dissemination has been noted across the peninsula.

View Article and Find Full Text PDF

India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage.

View Article and Find Full Text PDF

Background And Objectives: Identifying genetic causes of dementia in patients visiting memory clinics is important for patient care and family planning. Traditional clinical selection criteria for genetic testing may miss carriers of pathogenic variants in dementia-related genes. This study aimed identify how many carriers we are missing and to optimize criteria for selecting patients for genetic counseling in memory clinics.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!