In this work we study a prototype q-plate segmented tunable liquid crystal retarder device. It shows a large modulation range (5π rad for a wavelength of 633 nm and near 2π for 1550 nm) and a large clear aperture of one inch diameter. We analyze the operation of the q-plate in terms of Jones matrices and provide different matrix decompositions useful for its analysis, including the polarization transformations, the effect of the tunable phase shift, and the effect of quantization levels (the device is segmented in 12 angular sectors). We also show a very simple and robust optical system capable of generating all polarization states on the first-order Poincaré sphere. An optical polarization rotator and a linear retarder are used in a geometry that allows the generation of all states in the zero-order Poincaré sphere simply by tuning two retardance parameters. We then use this system with the q-plate device to directly map an input arbitrary state of polarization to a corresponding first-order vectorial beam. This optical system would be more practical for high speed and programmable generation of vector beams than other systems reported so far. Experimental results are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.009583DOI Listing

Publication Analysis

Top Keywords

vector beams
8
optical system
8
poincaré sphere
8
analysis segmented
4
q-plate
4
segmented q-plate
4
q-plate tunable
4
tunable retarder
4
retarder generation
4
generation first-order
4

Similar Publications

A 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.

View Article and Find Full Text PDF

Optical misalignment between transmitter and receiver leads to power loss and mode crosstalk in a mode division multiplexing (MDM) free-space optical (FSO) link. We report both numerical simulations and experimental results on the propagation performance of two typical vector beams, C-point polarization full Poincaré beams (FPB), and V-point polarization cylindrical vector beams (CVB), compared to homogeneous polarization scalar vortex beams (SVB) under optical misalignment. The FSO communication performance under misalignment using different transmit beams is evaluated in terms of power loss, mode crosstalk, power penalty, etc.

View Article and Find Full Text PDF

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.

View Article and Find Full Text PDF

The generation of vector beams using metasurfaces is crucial for the manipulation of light fields and has significant application potential, ranging from classical physics to quantum science. This paper introduces a novel dielectric metasurface composed of quarter-wave plate (QWP) meta-atoms, known as a QWP metasurface, designed to generate focused vector beams (VBs) of Bell-like states under right circularly polarized illumination. The propagation phase imparted on both the co- and cross-polarized components of the output field constructs hyperbolic and helical phase profiles with topological charge , whereas the Pancharatnam-Berry (PB) phase acts only on the cross-polarized component to construct another helical phase profile with topological charge .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!