In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.54.00F201 | DOI Listing |
Light Sci Appl
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
High-power tunable lasers are intensely pursued due to their vast application potential such as in telecom, ranging, and molecular sensing. Integrated photonics, however, is usually considered not suitable for high-power applications mainly due to its small size which limits the energy storage capacity and, therefore, the output power. In the late 90s, to improve the beam quality and increase the stored energy, large-mode-area (LMA) fibers were introduced in which the optical mode area is substantially large.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.
View Article and Find Full Text PDFWe report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.
View Article and Find Full Text PDFTransverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.
View Article and Find Full Text PDFUltrasonics
December 2024
Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganes, Madrid, Spain.
The most common transducers used to generate ultrasound in medical applications are based on short electrical pulses applied to piezoelectric transducers and capacitive micromachined ultrasound transducers. However, piezoelectric transducers have a limited frequency bandwidth, defined by their physical thickness, and capacitive micromachined ultrasound transducers have poor transmission efficiency. The high frequency cutoff limits the spatial resolution of ultrasonic images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!