Novel features of the ISC machinery revealed by characterization of Escherichia coli mutants that survive without iron-sulfur clusters.

Mol Microbiol

Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan.

Published: March 2016

Biological assembly of iron-sulfur (Fe-S) clusters is mediated by complex systems consisting of multiple proteins. Escherichia coli possesses two distinct systems called the ISC and SUF machineries encoded by iscSUA-hscBA-fdx-iscX and sufABCDSE respectively. Deletion of both pathways results in absence of the biosynthetic apparatus for Fe-S clusters, and consequent lethality, which has hampered detailed genetic studies. Here we report that modification of the isoprenoid biosynthetic pathway can offset the indispensability of the Fe-S cluster biosynthetic systems and show that the resulting Δisc Δsuf double mutants can grow without detectable Fe-S cluster-containing proteins. We also constructed a series of mutants in which each isc gene was disrupted in the deletion background of sufABCDSE. Phenotypic analysis of the mutants revealed that Fdx, an essential electron-transfer Fe-S protein in the ISC machinery, is dispensable under anaerobic conditions, which is similar to the situation with IscA. Furthermore, we found that several suppressor mutations in IscU, an Fe-S scaffold protein responsible for the de novo Fe-S cluster assembly, could bypass the essential role of the chaperone system HscA and HscB. These findings pave the way toward a detailed molecular analysis to understand the mechanisms involved in Fe-S cluster biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.13271DOI Listing

Publication Analysis

Top Keywords

isc machinery
8
escherichia coli
8
fe-s clusters
8
fe-s cluster
8
fe-s
7
novel features
4
isc
4
features isc
4
machinery revealed
4
revealed characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!