Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be "preemergent" zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702702PMC
http://dx.doi.org/10.1128/JVI.01433-15DOI Listing

Publication Analysis

Top Keywords

simian arteriviruses
8
wild nonhuman
8
nonhuman primates
8
rna viruses
8
hemorrhagic fever
8
zoonotic potential
4
potential simian
4
wild
4
arteriviruses wild
4
primates sources
4

Similar Publications

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells.

View Article and Find Full Text PDF

Suppression of TRIM19 by arterivirus nonstructural protein 1 promotes viral replication.

Virus Res

February 2024

Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, United States. Electronic address:

Tripartite motif (TRIM)-containing proteins are a family of regulatory proteins that can participate in the induction of antiviral cytokines and antagonize viral replication. Promyelocytic leukemia (PML) protein is known as TRIM19 and is a major scaffold protein organizing the PML nuclear bodies (NBs). PML NBs are membrane-less organelles in the nucleus and play a diverse role in maintaining cellular homeostasis including antiviral response.

View Article and Find Full Text PDF

Mouse models of viral infection play an especially large role in virology. In 1960, a mouse virus, lactate dehydrogenase-elevating virus (LDV), was discovered and found to have the peculiar ability to evade clearance by the immune system, enabling it to persistently infect an individual mouse for its entire lifespan without causing overt disease. However, researchers were unable to grow LDV in culture, ultimately resulting in the demise of this system as a model of failed immunity.

View Article and Find Full Text PDF

Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans.

Cell

October 2022

BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA. Electronic address:

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g.

View Article and Find Full Text PDF

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!