Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mV(pp) and 56.97 ± 7.53 mV(pp), respectively. The IB coefficient was -89.39 ± 2.44 dB for K562 cells and -89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and -56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and -98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were -31.02 ± 3.04 dB and -33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student's t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in the development of ultrasonic cell sorters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851106 | PMC |
http://dx.doi.org/10.1109/TUFFC.2015.007307 | DOI Listing |
Chem Biodivers
January 2025
Vietnam National University Hanoi, VNU University of Science, 19 Le Thanh Tong, Hoankiem, VIET NAM.
The current study first describes the chemical profiles of essential oils from Vietnamese Chromolaena odorata fresh stem barks and leaves. The gas chromatography-flame inonization detection/mass spectrometry (GC-FID/MS) analysis revealed that α-pinene (6.97-38.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia.
Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
Background: Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
The efficacy of cancer immunotherapy is significantly influenced by the heterogeneity of individual tumors and immune responses. To investigate this phenomenon, a microfluidic platform is constructed for profiling immune-cancer cell interactions at the single-cell proteomics level for the first time. Based on the platform, a comprehensive workflow is proposed for achieving accurate single-cell pairing of an immune cell and a cancer cell with low cell damage and high success rate up to 95%, cell pair co-culture, and real-time microscopic monitoring of the cell-pair interactions, cell pair retrieval, mass spectrometry-based proteomic analysis of singe cell pairs, and decoupling of the proteomic information for each cell within the cell pair with the stable-isotope labeling method.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A from Streptomyces sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!