Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

Environ Monit Assess

Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with the Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus.

Published: December 2015

Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-015-4957-9DOI Listing

Publication Analysis

Top Keywords

tap water
12
microbial quality
8
molecular identification
8
cultivable microorganisms
8
urban drinking
8
drinking water
8
water distribution
8
limassol cyprus
8
water samples
8
water
6

Similar Publications

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson algorithm. However, iterative approximation involves a matrix inversion which acts as a computational bottleneck and may significantly slow down the process.

View Article and Find Full Text PDF

Immobilization of 4-MBA & Cu on Au nanoparticles modified screen-printed electrode for glyphosate detection.

Talanta

January 2025

College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.

This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!