Laser-Limited Signatures of Quantum Coherence.

J Phys Chem A

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Published: May 2016

Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral transients. Coherence amplitude maps, which systematically represent quantum beats observable in two-dimensional (2D) spectroscopy, are currently the prevalent tool for making this distinction. In this article, we present coherence amplitude maps of a molecular dimer, which have become significantly distorted as a result of the finite laser bandwidth used to record the 2D spectra. We argue that under standard spectroscopic conditions similar distortions are to be expected for compounds absorbing over a spectral range similar to, or exceeding, that of the dimer. These include virtually all photovoltaic polymers and certain photosynthetic complexes. With the distortion of coherence amplitude maps, alternative ways to identify quantum coherence are called for. Here, we use numerical simulations that reproduce the essential photophysics of the dimer to unambiguously determine the excited state origin of prominent quantum beats observed in the 2D spectral measurements. This approach is proposed as a dependable method for coherence identification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b10312DOI Listing

Publication Analysis

Top Keywords

quantum coherence
12
coherence amplitude
12
amplitude maps
12
excited state
8
state origin
8
quantum beats
8
coherence
7
quantum
5
laser-limited signatures
4
signatures quantum
4

Similar Publications

The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

Resilience-runtime tradeoff relations for quantum algorithms.

Rep Prog Phys

January 2025

Applied and Computational Mathematics Division, National Institutes of Standards and Technology (NIST), NA, College Park, Maryland, 20737, UNITED STATES.

A leading approach to algorithm design aims to minimize the number of operations in an algorithm's compilation. One intuitively expects that reducing the number of operations may decrease the chance of errors. This paradigm is particularly prevalent in quantum computing, where gates are hard to implement and noise rapidly decreases a quantum computer's potential to outperform classical computers.

View Article and Find Full Text PDF

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!