Background: Salinity is a serious factor limiting the productivity of agricultural plants. One of the potential problems for plants growing under saline conditions is the inability to up take enough K(+). The addition of K(+) may considerably improve the salt tolerance of plants grown under salinity. It is assumed that increasing the K(+) supply at the root zone can ameliorate the reduction in growth imposed by high salinity. The present study aims to determine whether an increase in the K/Na ratio in the external media would enhance the growth of date palm seedlings under in vitro saline conditions.
Methods: Date palm plants were grown at four concentrations of Na + K/Cl (mol/m(3)) with three different K/Na ratios. The 12 salt treatments were added to modified MS medium. The modified MS medium was further supplemented with sucrose at 30 g/l.
Results: Growth decreased substantially with increasing salinity. Growth expressed as shoot and root weight, enhanced significantly with certain K/Na ratios, and higher weight was maintained in the presence of equal K and Na. It is the leaf length, leaf thickness and root thickness that had significant contribution on total dry weight. Na(+) contents in leaf and root increased significantly increased with increasing salinity but substantial decreases in Na(+) contents were observed in the leaf and root with certain K/Na ratios. This could be attributed to the presence of a high K(+) concentration in the media. The internal Na(+) concentration was higher in the roots in all treatments, which might indicate a mechanism excluding Na(+) from the leaves and its retention in the roots. K/Na ratios up to one significantly increased the leaf and root K(+) concentration, and it was most pronounced in leaves. The K(+) contents in leaf and root was not proportional to the K(+) increase in the media, showing a high affinity for K(+) uptake at lower external K(+) concentrations, but this mechanism continues to operate even with high external Na(+) concentrations.
Conclusion: Increasing K/Na ratios in the growing media of date plam significantly reduced the absorption of Na(+) less than 200 mM and also balance ions compartmentalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642634 | PMC |
http://dx.doi.org/10.1186/s40659-015-0055-2 | DOI Listing |
Sci Rep
January 2025
Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran.
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China. Electronic address:
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China. Electronic address:
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India. Electronic address:
The decline in water quality, particularly in river water, is a significant concern, especially in semi-arid areas and tourist destinations such as Ladakh. Periodic assessment of water quality could be a crucial step for ensuring its potability and serve as a foundation for formulating effective policies for sustainable water resource management. Consequently, this research aimed to analyze the periodic variations in the water quality of Indus River for domestic and agricultural use, focusing on the impact of geochemical processes within the basin.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.
While not essential for most plants, sodium (Na) can partially substitute for potassium (K) in some metabolic functions. Thus, understanding the mechanisms underlying K and Na uptake, transport, utilization, and ion replacement is crucial to sustain forest production. A pot experiment was designed with 6 K/Na ratios (100/0, 85/15, 70/30, 55/45, 40/60, and 0/0%) and two water conditions (well-watered, W+; and water-stressed, W-) on two Eucalyptus species with contrasting drought tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!