The following objectives of the study were formulated: i) to investigate differences in measured signal to noise ratios while recording speech-evoked auditory brainstem response (cABR) and cortical late latency response (LLR) in low and high acceptable noise level (ANL) groups; and ii) to compare peak to peak amplitude of cABR (V-A) and LLR (N1-P2) in low and high ANL groups. A total of 23 normal hearing participants was included in the study. One shot replicative and partly exploratory research design was utilized to study the effect of signal to noise ratio in a recorded waveform on afferent mechanism, assessed by cABR and LLR on participants having values of ANL of ≤7 (low ANL group) and ≥13 (high ANL group). There were no differences in signal to noise ratio in the recorded waveforms of cABR and LLR between low and high ANL groups at both brainstem and cortical levels. However, the peak to peak amplitude of V-A of cABR and N1-P2 of LLR were both statistically larger in the high ANL group compared to their counterpart. The signal to noise ratio in recorded waveforms did not differentiated cABR (V-A) or LLR (N1-P2) in low and high ANL groups. However, Larger peak to peak amplitudes in the high ANL group suggests differences higher processing centers in the upper brainstem to the auditory cortex. The findings of the study may be useful in determining the patient acceptability of noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627135PMC
http://dx.doi.org/10.4081/audiores.2014.93DOI Listing

Publication Analysis

Top Keywords

high anl
24
signal noise
20
low high
16
anl groups
16
anl group
16
peak peak
12
noise ratio
12
ratio recorded
12
anl
9
noise
8

Similar Publications

Light-induced electron spin qubit coherences in the purple bacteria reaction center protein.

Phys Chem Chem Phys

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.

Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.

View Article and Find Full Text PDF

Transition metal vacancy and position engineering enables reversible anionic redox reaction for sodium storage.

Nat Commun

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

Article Synopsis
  • The research focuses on improving the capacity and stability of layered transition metal oxides by using a dual doping strategy with Mg ions and vacancies.
  • The introduction of these dopants enhances the anionic redox reaction by creating nonbonding O 2p orbitals and prevents structural issues caused by Na-O configurations.
  • The addition of Mn ions stabilizes the structure by preventing the gliding motion of layers during high discharge, resulting in a better-performing electrode for sodium storage.
View Article and Find Full Text PDF

Introduction: Acceptable Noise Level (ANL) is defined as the most comfortable level (MCL) intensity for speech and is calculated by subtracting the maximum noise tolerable by an individual. The ANL test has been used over time to predict hearing aid use and the impact of digital noise reduction. This study analyzes this impact by using different masker babble spectra when performing the ANL test in both hearing-impaired and healthy subjects in three different languages (Dutch, French, and Italian).

View Article and Find Full Text PDF

Reducing heat load density with asymmetric and inclined double-crystal monochromators: principles and requirements revisited.

J Synchrotron Radiat

January 2025

Advanced Photon Source, Argonne National Laboratory (ANL), 9700 South Cass Avenue, Lemont, IL 60439, USA.

Asymmetric double-crystal monochromators (aDCMs) and inclined DCMs (iDCMs) can significantly expand the X-ray beam footprint and consequently reduce the heat load density and gradient. Based on rigorous dynamical theory calculations, the major principles and properties of aDCMs and iDCMs are presented to guide their design and development, particularly for fourth-generation synchrotrons. In addition to the large beam footprint, aDCMs have very large bandwidths (up to ∼10 eV) and angular acceptance, but the narrow angular acceptance of the second crystal requires precise control of the relative orientations and strains.

View Article and Find Full Text PDF
Article Synopsis
  • A novel LC-MS/MS method was developed to quickly and accurately measure 23 tyrosine kinase inhibitors (TKIs) in plasma from cancer patients receiving anlotinib (ANL) treatment.
  • The study involved 55 patients, collecting plasma samples to analyze the relationship between ANL trough concentrations and reported toxicities.
  • Results showed a significant correlation between higher ANL levels and increased toxicity, with a predictive threshold identified, alongside low platelet counts serving as additional risk factors for severe side effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!