Alterations in the myelination of the cerebral cortex may underlie abnormal cortical function in a variety of brain diseases. Here, we describe a technique for investigating changes in intracortical myelin in clinical populations on the basis of cortical thickness measurements with magnetic resonance imaging (MRI) at 3 Tesla. For this, we separately compute the thickness of the shallower, lightly myelinated portion of the cortex and its deeper, heavily myelinated portion (referred to herein as unmyelinated and myelinated cortex, respectively). Our expectation is that the thickness of the myelinated cortex will be a specific biomarker for disruptions in myeloarchitecture. We show representative atlases of total cortical thickness, T, unmyelinated cortical thickness, G, and myelinated cortical thickness, M, for a healthy group of 20 female subjects. We further demonstrate myelinated cortical thickness measurements in a preliminary clinical study of 10 bipolar disorder type-I subjects and 10 healthy controls, and report significant decreases in the middle frontal gyrus in T, G, and M in the disorder, with the largest percentage change occurring in M. This study highlights the potential of myelinated cortical thickness measurements for investigating intracortical myelin involvement in brain disease at clinically relevant field strengths and resolutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615825 | PMC |
http://dx.doi.org/10.3389/fnins.2015.00396 | DOI Listing |
Neuroradiology
January 2025
Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.
Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.
Neuroscience
January 2025
Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China; Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008 China; Institute of Brain Science, Nanjing University, Nanjing, China. Electronic address:
Type 2 diabetes (T2D) is often accompanied by non-alcoholic fatty liver disease (NAFLD), both of which are related to brain damage and cognitive impairment. However, cortical structural alteration and its relationship with metabolism and cognition in T2D with NAFLD (T2NAFLD) and without NAFLD (T2noNAFLD) remain unclear. The brain MRI scans, clinical measures and neuropsychological test were evaluated in 50 normal controls (NC), 73 T2noNAFLD, and 58 T2NAFLD.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China. Electronic address:
Objective: This study aimed to explore the causal relationship between brain cortical and subcortical structures and major depressive disorder (MDD) using the Mendelian Randomization (MR) method.
Methods: Single nucleotide polymorphisms (SNPs) were used as instrumental variables to analyze subcortical brain volume, cortical thickness, and surface area as exposure factors, with MDD as the outcome. Multiple sensitivity analyses were conducted to validate the robustness of the results.
JBMR Plus
February 2025
INSERM UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France.
OI, or bone brittle disease, is characterized by increased mineralization of bone matrix independently of clinical severity. So, a beneficial effect of antiresorptive treatments such as bisphosphonates (BP) is questionable. We aim to compare the bone matrix characteristics before and after BP pamidronate (PAM).
View Article and Find Full Text PDFPLoS One
January 2025
School of Biological Sciences, Seoul National University, Seoul, South Korea.
Early-life malnutrition adversely affects nearly all organ systems, resulting in multiple physiological adaptations, including growth restriction and muscle and bone loss. Although there is growing evidence that probiotics effectively improve systemic growth under malnourished conditions in different animal models, our knowledge of the beneficial effects of probiotics on various organs is limited. Here, we show that Lactobacillus plantarum strain WJL (LpWJL) can mitigate skeletal muscle and bone loss in protein-malnourished juvenile mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!