The immediate product of the pyruvate kinase catalyzed phosphorylation of beta-hydroxypyruvate is the enol of tartronate semialdehyde phosphate (TSP). The reaction has the same pH profile as that for the phosphorylation of pyruvate with pK's of 8.2 and 9.7 observed in H2O. This enol tautomerizes in solution to the aldehyde, which in turn becomes hydrated. 31P NMR spectra indicate that the enol resonates approximately 1 ppm upfield from the hydrated aldehyde. By following the tautomerization spectrophotometrically at 240 nm, we have found it to be independent of pH (0.2 min-1 below pH 6 in water), except that it is 2-fold slower above the pK of the phosphate group (6.3 in H2O and 6.7 in D2O). It is 3.6-fold slower in D2O. When this TSP is reduced with NaBH4, approximately 50% of the product is D-2-phosphoglyceric acid (substrate for enolase). Thus, while the immediate product of the phosphorylation rection is the enol of TSP, the eventual product is D,L-TSP. Both the enol and the aldehyde forms of TSP were found to be potent inhibitors of yeast enolase with apparent Ki values of 100 nM and 5 microM, respectively. However, since the aldehyde form is 95-99% hydrated [Stubbe, J., & Abeles, R. (1980) Biochemistry 19, 5505], the true Ki for the aldehyde species is 50-250 nM. The enol of TSP shows slow binding behavior, as expected for an intermediate analogue, with a t1/2 for this process of approximately 15 s (k = 0.046 s-1) and an initial Ki of approximately 200 nM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00430a031DOI Listing

Publication Analysis

Top Keywords

tartronate semialdehyde
8
semialdehyde phosphate
8
enol tsp
8
enol
6
tsp
5
aldehyde
5
enzymatic synthesis
4
synthesis inhibitory
4
inhibitory characteristics
4
characteristics tartronate
4

Similar Publications

Dichloroacetate (DCA) commonly occurs in the environment due to natural production and anthropogenic releases, but its fate under anoxic conditions is uncertain. Mixed culture RM comprising " Dichloromethanomonas elyunquensis" strain RM utilizes DCA as an energy source, and the transient formation of formate, H, and carbon monoxide (CO) was observed during growth. Only about half of the DCA was recovered as acetate, suggesting a fermentative catabolic route rather than a reductive dechlorination pathway.

View Article and Find Full Text PDF
Article Synopsis
  • NADPH-dependent glyoxylate reductases from *Arabidopsis thaliana* (AtGLYR) convert glyoxylate and succinic semialdehyde into hydroxyacids, with AtGLYR1 showing similarities to the β-HAD protein family.
  • Site-directed mutagenesis of AtGLYR1 revealed key amino acids essential for catalysis and substrate binding, particularly highlighting Lys170 as critical for catalysis, while others play key roles in binding rather than catalysis.
  • The crystal structure of AtGLYR1 was solved, supporting its classification within the β-HAD family and suggesting an acid/base mechanism of action, further indicating that AtGLYR1 and AtGLYR2 favor glyoxylate over
View Article and Find Full Text PDF

Ethylene glycol metabolism by Pseudomonas putida.

Appl Environ Microbiol

December 2012

Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.

In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440.

View Article and Find Full Text PDF

Glyoxylate carboligase (GCL) is a thiamin diphosphate (ThDP)-dependent enzyme, which catalyzes the decarboxylation of glyoxylate and ligation to a second molecule of glyoxylate to form tartronate semialdehyde (TSA). This enzyme is unique among ThDP enzymes in that it lacks a conserved glutamate near the N1' atom of ThDP (replaced by Val51) or any other potential acid-base side chains near ThDP. The V51D substitution shifts the pH optimum to 6.

View Article and Find Full Text PDF

In the presence of magnesium, enolase catalyzes the dehydration of 2-phospho-d-glycerate (PGA) to phosphoenolpyruvate (PEP) in glycolysis and the reverse reaction in gluconeogensis at comparable rates. The structure of human neuron specific enolase (hNSE) crystals soaked in PGA showed that the enzyme is active in the crystals and produced PEP; conversely soaking in PEP produced PGA. Moreover, the hNSE dimer contains PGA bound in one subunit and PEP or a mixture of PEP and PGA in the other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!