Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628652PMC
http://dx.doi.org/10.1155/2015/463950DOI Listing

Publication Analysis

Top Keywords

barrier dysfunction
12
junctional adhesion
8
adhesion molecule-1
8
jam-1
8
molecule-1 jam-1
8
jam-1 circulation
8
organ dysfunction
8
early trauma
8
barrier molecule
8
polytrauma patients
8

Similar Publications

: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. : The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation.

View Article and Find Full Text PDF

Patchouli oil (PO) is a natural substance famous for its immune-enhancing and anti-inflammatory effects. Atopic dermatitis (AD) is characterized by epidermal gene mutations, skin barrier dysfunction, and immune dysregulation, making patchouli volatile oil a potential candidate for AD treatment. Initially, PO was mixed with ethyl oleate (EO), castor oil ethoxylated ether-40 (EL-40), anhydrous ethanol, and water to form a patchouli oil microemulsion (PO-ME) system.

View Article and Find Full Text PDF

Aims: This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity.

Methods: Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran.

View Article and Find Full Text PDF

QSP Modeling Shows Pathological Synergism Between Insulin Resistance and Amyloid-Beta Exposure in Upregulating VCAM1 Expression at the BBB Endothelium.

CPT Pharmacometrics Syst Pharmacol

December 2024

Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.

Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, is closely associated with Alzheimer's disease (AD). Cerebrovascular dysfunction is manifested in both T2DM and AD, and is often considered as a pathological link between the two diseases. Insulin signaling regulates critical functions of the blood-brain barrier (BBB), and endothelial insulin resistance could lead to BBB dysfunction, aggravating AD pathology.

View Article and Find Full Text PDF

Background: Research increasingly supports the role of electronic health technology in improving cognitive function. However, individuals with mild cognitive impairment or dementia often show low compliance with electronic health technology. To understand the barriers and facilitators for this group, this study was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!