A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

Plant Physiol

Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)

Published: January 2016

A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704586PMC
http://dx.doi.org/10.1104/pp.15.01356DOI Listing

Publication Analysis

Top Keywords

catalytic domain
12
cellulose synthesis
12
synthesis complex
12
cellulose chains
12
cellulose
8
number cellulose
8
monomeric trimeric
8
small-angle x-ray
8
x-ray scattering
8
complex
5

Similar Publications

Group V Chitin Deacetylases Are Responsible for the Structure and Barrier Function of the Gut Peritrophic Matrix in the Chinese Oak Silkworm .

Int J Mol Sci

December 2024

Liaoning Engineering and Technology Research Center for Insect Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.

Chitin deacetylases (CDAs) are carbohydrate esterases associated with chitin metabolism and the conversion of chitin into chitosan. Studies have demonstrated that chitin deacetylation is essential for chitin organization and compactness and therefore influences the mechanical and permeability properties of chitinous structures, such as the peritrophic membrane (PM) and cuticle. In the present study, two genes ( and ) encoding CDA protein isoforms were identified and characterized in Chinese oak silkworm () larvae.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of -succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from (DapE). The most potent pyrazole analog bears an aminopyridine amide with an IC of 17.9 ± 8.

View Article and Find Full Text PDF

It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.

View Article and Find Full Text PDF

YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!