Study Design: Single-blind, block-randomization crossover design.

Objective: To compare the knee extensor muscle torque production elicited with 2500-Hz burst-modulated alternating current (BMAC) and with a monophasic pulsed current (MPC) at the maximum tolerated stimulation intensity.

Background: Neuromuscular electrical stimulation (NMES) is often used for strengthening the quadriceps following knee surgery. Strength gains are dependent on muscle torque production, which is primarily limited by discomfort. Burst-modulated alternating current stimulation is a clinically popular waveform for NMES. Prior research has established that MPC with a relatively long pulse duration is effective for high muscle torque production.

Methods: Participants in this study were 20 adults with no history of knee injury. A crossover design was used to randomize the order in which each participant's dominant or nondominant lower extremity received NMES and the waveform (MPC or BMAC) this limb received. Stimulation intensity was incrementally increased until participants reached their maximum tolerance. The torque produced was converted to a percentage of each participant's maximum volitional isometric contraction of the respective limb.

Results: A general linear model for a 2-treatment, 2-period crossover design was utilized to analyze the results. The mean ± SD electrically induced percent maximum volitional isometric contraction at maximal participant tolerance was 49.5% ± 19.6% for MPC and 29.8% ± 12.4% for BMAC. This difference was statistically significant (P = .002) after accounting for treatment order and limb, which had no effect on torque production.

Conclusion: Neuromuscular stimulation using MPC may be more efficacious than using BMAC to achieve a high torque output in patients with quadriceps weakness.

Download full-text PDF

Source
http://dx.doi.org/10.2519/jospt.2015.5861DOI Listing

Publication Analysis

Top Keywords

muscle torque
16
burst-modulated alternating
12
alternating current
12
2500-hz burst-modulated
8
monophasic pulsed
8
pulsed current
8
torque production
8
crossover design
8
maximum volitional
8
volitional isometric
8

Similar Publications

Introduction And Objective: Surface electromyography (sEMG) measurements are a valid method for sublesional muscle activity following spinal cord injury (SCI). In the literature there are few reports evaluating the effect of robotic assisted gait training (RAGT) on the sEMG properties change in SCI patients. The aim of this study was to evaluate the influence of RAGT on observed change of sEMG, and in 64 incomplete SCI patients in the sub-acute stage in relation to functional scales.

View Article and Find Full Text PDF

Introduction: This study aimed to investigate whether individualizing autonomic recovery periods between resistance training (RT) sessions (IND) using heart rate variability (HRV), measured by the root mean square of successive R-R interval differences (RMSSD), would lead to greater and more consistent improvements in muscle strength, muscle mass, and functional performance in older women compared to a fixed recovery protocol (FIX).

Methods: Twenty-one older women (age 66.0 ± 5.

View Article and Find Full Text PDF

Objective: Spasticity is a common complication in patients with multiple sclerosis (pwMS). The present study aimed to evaluate the clinical, biomechanical, and functional effects of dry needling (DN) in treating gastrocnemius muscle spasticity in pwMS.

Materials And Methods: A pilot single-blinded randomized controlled trial was carried out.

View Article and Find Full Text PDF

End-divergent architecture diversifies within-muscle mechanical action in human gluteus maximus in vivo.

J Biomech

December 2024

Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; Human Performance Laboratory, Waseda University, Saitama, Japan.

A muscle's mechanical action is affected by its architecture. However, less is known about the architecture of muscles with broad attachments: "end-divergent" muscles. Potential regional variation of fascicle orientation in end-divergent muscles suggests that their mechanical action varies by region.

View Article and Find Full Text PDF

The role of the human ankle joint in activities of daily living, including walking, maintaining balance, and participating in sports, is of paramount importance. Ankle joint dorsiflexion and plantarflexion functionalities mainly account for ground clearance and propulsion power generation during locomotion tasks, where those functionalities are driven by the contraction of ankle joint skeleton muscles. Studies of corresponding muscle contractility during ankle dynamic functions will facilitate us to better understand the joint torque/power generation mechanism, better diagnose potential muscular disorders on the ankle joint, or better develop wearable assistive/rehabilitative robotic devices that assist in community ambulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!