Molecular interaction investigation between three CdTe:Zn(2+) quantum dots and human serum albumin: A comparative study.

Colloids Surf B Biointerfaces

College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China. Electronic address:

Published: December 2015

Water-soluble Zn-doped CdTe quantum dots (CdTe:Zn(2+) QDs) have attracted great attention in biological and biomedical applications. In particular, for any potential in vivo application, the interaction of CdTe:Zn(2+) QDs with human serum albumin (HSA) is of greatest importance. As a step toward the elucidation of the fate of CdTe:Zn(2+) QDs introduced to organism, the molecular interactions between CdTe:Zn(2+) QDs with three different sizes and HSA were systematically investigated by spectroscopic techniques. Three CdTe:Zn(2+) QDs with maximum emission of 514 nm (green QDs, GQDs), 578 nm (yellow QDs, YQDs), and 640 nm (red QDs, RQDs) were tested. The binding of CdTe:Zn(2+) QDs with HSA was a result of the formation of HSA-QDs complex and electrostatic interactions played major roles in stabilizing the complex. The Stern-Volmer quenching constant, associative binding constant, and corresponding thermodynamic parameters were calculated. The site-specific probe competitive experiments revealed that the binding location of CdTe:Zn(2+) QDs with HSA was around site I. The microenvironmental and conformational changes of HSA induced by CdTe:Zn(2+) QDs were analyzed. These results suggested that the conformational change of HSA was dramatically at secondary structure level and the biological activity of HSA was weakened in the present of CdTe:Zn(2+) QDs with bigger size.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.10.028DOI Listing

Publication Analysis

Top Keywords

cdtezn2+ qds
36
qds
12
cdtezn2+
10
three cdtezn2+
8
quantum dots
8
human serum
8
serum albumin
8
qds hsa
8
hsa
7
molecular interaction
4

Similar Publications

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Performance enhancement of InSnZnO thin-film transistors by modifying the dielectric-semiconductor interface with colloidal quantum dots.

Nanoscale Adv

December 2024

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China

Thin film transistors (TFTs) with InSnZnO (ITZO) and AlO as the semiconductor and dielectric layers, respectively, were investigated, aiming to elevate the device performance. Chemically synthesized CuInS/ZnS core/shell colloidal quantum dots (QDs) were used to passivate the semiconductor/dielectric interface. Compared with the pristine device, the device with the integrated QDs demonstrates remarkably improved electrical performance, including a higher electron mobility and a lower leakage current.

View Article and Find Full Text PDF

The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!