A nontarget screening using high-resolution mass spectrometry (HRMS) was established to identify industrial emerging contaminants in the Rhine River. With this approach, quaternary triphenylphosphonium compounds (R-Ph3P(+)) were identified as new emerging contaminants in the aquatic environment. The suggested chemical structures were elucidated by MS fragmentation and chemical databank searches and eventually confirmed via authentic standards. R-Ph3P(+) are used worldwide by the chemical industry to synthesize alkenes via the Wittig reaction. In total, five compounds [R = butyl (Bu), R = ethyl (Et), R = methoxymethyl (MeOMe), R = methyl (Me), and R = phenyl (Ph)] were found in German rivers and streams. R-Ph3P(+) were detected only in those rivers and streams that received an appreciable portion of wastewater from the chemical industry. Up to 2.5 μg/L Et-Ph3P(+) was quantified in a small stream from the Hessian Ried, and in the Rhine, up to 0.56 μg/L Me-Ph3P(+) was detected. R-Ph3P(+) were also identified in suspended particulate matter and sediments in the Rhine catchment, with MeOMe-Ph3P(+) concentrations of up to 0.75 mg/kg and up to 0.21 mg/kg, respectively. Because of the lack of ecotoxicological studies, the environmental risks caused by R-Ph3P(+) can be assessed for neither pelagic nor benthic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b03926 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!