The levels and sources of toxic heavy metals in Amanita loosii (AL) and Cantharellus floridulus (CF) mushrooms and their substrates were studied in some parts of Zimbabwe, Rail Block forest (mining town), Macheke forest (commercial farming), and Muganyi communal lands. The mushrooms and their associated soils were acid digested prior to Al, Pb, and Zn determination by inductively coupled plasma optical emission spectroscopy. The transfer factors, mushrooms-soil metal correlation coefficients, daily intake rates, weekly intake rates, and target hazard quotients were calculated for each metal. The concentration of Zn, Al and Pb in mushrooms ranged from 1.045 ± 0.028 to 7.568 ± 0.322, 0.025 ± 0.001 to 0.654 ± 0.005, and a maximum of 5.78 ± 0.31 mg/kg, respectively, in all the three sampling areas. The mean heavy metal concentrations among the three sampling areas decreased as follows: Rail Block forest (mining town) > Macheke forest (commercial farming) > Muganyi communal lands for the concentrations in both mushrooms and total concentration in their substrates. C. floridulus accumulated higher concentrations of Al, Zn, and Pb than A. loosii at each site under study. Zn in both AL and CF (Muganyi communal lands) and Pb in AL (Rail Block forest) were absorbed only from the soils, while other sources of contamination were involved elsewhere. The consumption of 300 g of fresh A. loosii and C. floridulus per day by children less than 16 kg harvested from Rail Block forest would cause health problems, while mushrooms from Macheke Forest and Muganyi communal lands were found to be safe for human consumption. Due to non-biodegradability and bioaccumulation abilities of heavy metals, people are discouraged to consume A. loosii and C. floridulus from Rail Block forest for they have significant levels of heavy metals compared to those from Macheke forest and Muganyi communal lands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-015-4974-8 | DOI Listing |
J Lesbian Stud
January 2025
University of California Santa Cruz, Santa Cruz, CA, USA.
Conserv Sci Pract
June 2024
Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, USA.
Native ecosystem and biodiversity loss from land use conversion into human-modified landscapes are evident in the United States and globally. In addition to public land conservation, there is an increase in private land conservation through conservation easements (CEs) across exurban landscapes. Not every CE was established strictly for biodiversity protection and permitted land uses can increase human modification.
View Article and Find Full Text PDFData Brief
December 2024
Departamento Académico de Ingeniería Forestal y Medio Ambiente, Universidad Nacional Amazónica de Madre Dios, Av. Jorge Chavez 1160, Puerto Maldonado 17001, Peru.
Anthropogenic activities (e.g., logging, gold-mining, agriculture, and uncontrolled urban expansion) threaten the forests in the southeast of the Peruvian Amazon, one of the most diverse ecosystems worldwide.
View Article and Find Full Text PDFFront Microbiol
December 2024
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
Salt is a primary factor limiting the utilization of saline lands in coastal beach areas, with rhizosphere microorganisms playing a crucial role in enhancing crop stress resistance and exhibiting high sensitivity to environmental changes. Rice ( L.) is the preferred crop for reclaiming salinized soils.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region of Gansu Province, Lanzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The temporal stability of above-ground biomass (AGB) and below-ground biomass (BGB) in grasslands is crucial for maintaining a continuous supply of ecosystem functions and services, particularly in the context of global changes. Nitrogen (N) addition is well known to affect AGB stability, however, we still lack knowledge of how N addition affect BGB stability. Furthermore, a crucial knowledge gap remains regarding which underlying mechanisms drive AGB and BGB stability, which obstructs our comprehensive awareness of biomass stability from both above- and below-ground perspectives simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!