Nanomechanical and surface properties of rMSCs post-exposure to CAP treated UHMWPE wear particles.

Nanomedicine

School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK; Department of Biological Engineering, MA Institute of Technology, Cambridge, MA, USA. Electronic address:

Published: April 2016

Unlabelled: Wear debris generated by ultra-high molecular weight polyethylene (UHMWPE) used in joint replacement devices has been of concern due to reductions of the implant longevity. Cold atmospheric plasma (CAP) has been used to improve the wear performance of UHMWPE. Our aim was to investigate the elastic and adhesive properties of rat mesenchymal stem cells (rMSCs), through AFM, after exposure to UHMWPE wear debris pre- and post-CAP treatment. The results indicated that the main changes in cell elasticity and spring constant of MSC exposed to wear particles occurred in the first 24 h of contact and the particle concentration from 0.5 to 50 mg/l did not play a significant role. For UHMWPE treated for 7.5 min, with progression of the wear simulation the results of the CAP treated samples were getting closer to the result of untreated samples; while with longer CAP treatment this was not observed.

From The Clinical Editor: Joint replacements are now common clinical practice. However, the use of ultra-high molecular weight polyethylene (UHMWPE) still poses a concern, due to the presence of wear debris. The authors here investigated the effects of wear debris after cold atmospheric plasma treatment on rat mesenchymal stem cells. The positive results provided new strategies in future design of joint replacement materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819529PMC
http://dx.doi.org/10.1016/j.nano.2015.10.006DOI Listing

Publication Analysis

Top Keywords

wear debris
16
cap treated
8
wear
8
uhmwpe wear
8
wear particles
8
ultra-high molecular
8
molecular weight
8
weight polyethylene
8
polyethylene uhmwpe
8
joint replacement
8

Similar Publications

Quantifying tear exchange during rigid contact lens wear using corneoscleral profilometry: A proof of concept study.

Ophthalmic Physiol Opt

January 2025

Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.

Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.

View Article and Find Full Text PDF

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer.

Sensors (Basel)

December 2024

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.

View Article and Find Full Text PDF

Detailed Analysis of the Debris-Fretting Damage Areas on Coated Fuel Cladding.

Materials (Basel)

January 2025

Centrum Výzkumu Řež s.r.o., Hlavní 130, 250 68 Husinec-Řež, Czech Republic.

Fuel failure caused by fretting damage to cladding remains a relevant issue despite decades of research and development aimed at enhancing the physical parameters of fuel. This paper presents the results of experiments conducted at the Research Centre Řež on Zr-1%Nb alloy tube specimens covered with protective coatings made of chromium (Cr) and nitrogen (N) compounds. The experiments involved debris-fretting tests under dry conditions at room temperature as well as microscopic measurements of groove depths.

View Article and Find Full Text PDF

Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!