Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, spinel-type compounds have attracted great interest because of their gem-like qualities. However, little is known of their gas sensing properties. We report, in this paper, on a self-assembly method to prepare porous ZnCo2O4 (ZCO) nano/microspheres by a facile one-step solvothermal process and subsequent annealing. Abundant techniques were used to characterize the morphology and structure of the as-obtained compounds. Our data indicate that the hierarchical nano/microspheres are constructed from numerous nanoparticles primarily, which have a higher specific surface area (ca. 77.3 m(2) g(-1)) and are of uniform diameter (ca. 1 μm). To demonstrate their potential application, gas sensors based on the as-synthesized ZCO nano/microspheres were fabricated to test their sensing performance, whose sensing behaviours correspond to p-type semiconductors. The test results also indicate that porous spinel-type compounds have an excellent kinetic response to ethanol at an operating temperature of 175 °C and a superior selectivity. As such, hierarchical porous ZnCo2O4 nano/microspheres will hold promising potential in the gas sensor field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr05761b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!