Crystallography of the cores of phosphotyrosine-activated dimers of STAT1 (132-713) and STAT3 (127-722) bound to a similar double-stranded deoxyoligonucleotide established the domain structure of the STATs and the structural basis for activation through tyrosine phosphorylation and dimerization. We reported earlier that mutants in the linker domain of STAT1 that connect the DNA-binding domain and SH2 domain can prevent transcriptional activation. Because of the pervasive importance of persistently activated STAT3 in many human cancers and the difficulty of finding useful drug candidates aimed at disrupting the pY interchange in active STAT3 dimers, we have examined effects of an array of mutants in the STAT3 linker domain. We have found several STAT3 linker domain mutants to have profound effects of inhibiting STAT3 transcriptional activation. From these results, we propose (i) there is definite functional interaction of the linker both with the DNA binding domain and with the SH2 domain, and (ii) these putative contacts provide potential new targets for small molecule-induced pSTAT3 inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672786PMC
http://dx.doi.org/10.1073/pnas.1515876112DOI Listing

Publication Analysis

Top Keywords

linker domain
16
domain
9
domain sh2
8
sh2 domain
8
transcriptional activation
8
stat3 linker
8
stat3
7
mutations linker
4
domain affect
4
affect phospho-stat3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!