Bub3-BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes.

J Cell Biol

Université de Bordeaux, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France Centre National de la Recherche Scientifique, Institut Européen de Chimie et Biologie, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, 33607 Pessac, France

Published: November 2015

The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639866PMC
http://dx.doi.org/10.1083/jcb.201504059DOI Listing

Publication Analysis

Top Keywords

broken chromosomes
20
broken chromosome
12
broken
10
dna breaks
8
segregation broken
8
chromosomes
5
bub3-bubr1-dependent sequestration
4
sequestration cdc20fizzy
4
dna
4
cdc20fizzy dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!