Enrofloxacin is a synthetic chemotherapeutic agent from the class of the fluoroquinolones that is widely used to treat bacterial infections. It is metabolized to ciprofloxacin in the body as active metabolite. Fluoroquinolones change in the articular cartilage, especially with high doses and more than two weeks use. So, due to relatively excessive use of enrofloxacin in mammals and similarity of lambs to human subjects with respect to skeletal activity cycles, this study was done to investigate the effects of enrofloxacin on some cellular and molecular changes in growing lamb articular cartilage to evaluate some possible mechanisms involved these changes. Twelve, 2-month-old male lambs divided into three groups: control group received only normal saline; therapeutic group received 5mg/kg enrofloxacin subcutaneously, daily, for 15 days and toxic group received 35 mg/kg enrofloxacin in the same manner as therapeutic group. Twenty four hours after the last dose, the animals were sacrificed, and their stifle joints were dissected. Sampling from distal femoral and proximal tibial extremities was done quickly for further histological and molecular studies. Collagen-п content was studied with avidin-biotin immunohistochemistry method in different groups. Expression of Sox9 and caspase-3 was evaluated by Real-time PCR. Immunohistochemical changes were included decreases of matrix proteoglycans, carbohydrates, and Collagen-п in the toxic group. Some of these changes were observed in the therapeutic group with less intensity in comparison to the toxic group. Enrofloxacin were significantly decreased (P≤0.05). Sox9 expression in therapeutic and toxic groups compared to control group. But caspase -3 expressions in the toxic group significantly increased (P≤0.0001) with a comparison to other groups, while, between control and therapeutic groups, there were no significant differences. So, it can be concluded that enrofloxacin increases apoptosis in chondrocytes and decreases their numbers. Enrofloxacin use in growing lambs even at recommended therapeutic dose is not completely safe on articular cartilage. Moreover, higher doses of enrofloxacin induce severe changes in lamb articular cartilage.
Download full-text PDF |
Source |
---|
Ann Rheum Dis
January 2025
Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA. Electronic address: https://twitter.com/david_felson.
Background: Preventing worsening osteoarthritis (OA) in persons with early OA is a major treatment goal. We evaluated if different early OA definitions yielded enough cases of worsening OA within 2-5 years to make trial testing treatments feasible.
Methods: We assessed different definitions of early OA using data from Multicenter Osteoarthritis (MOST) Study participants who were followed up longitudinally.
Cell Transplant
January 2025
Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
To assess the impact of a single intra-articular (IA) injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with knee osteoarthritis (OA), a randomized, double-blind, placebo-controlled study was conducted. The study included 24 patients with knee OA who were randomly assigned to receive either a single IA injection of BM-MSCs or normal saline. Changes in the visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS) after IA injection were assessed at 3, 6, 9, and 12 months.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China.
Osteoarthritis (OA) is a common degenerative bone and joint disease with an unclear pathogenesis. Our study identified that the histone acetyltransferase encoded by Kat7 is upregulated in the affected articular cartilage of OA patients and in a mice model of medial meniscal instability-induced OA. Chondrocyte-specific knockdown of Kat7 expression exhibited a protective effect on articular cartilage integrity.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.
Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Fl, Rm 313, New York, NY 10016 (S.S.W., J.V., R.K., E.H.P., J.F.); Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, University Hospital Tübingen, Tübingen, Germany (S.S.W.); Department of Radiology, University Hospital Basel, Basel, Switzerland (J.V.); Department of Radiology, Hospital do Coraçao, São Paulo, Brazil (T.C.R.); Academic Surgical Unit, South West London Elective Orthopaedic Centre (SWLEOC), London, United Kingdom (D.D.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (B.F.); Department of Radiology, Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea (E.H.P.); Medscanlagos Radiology, Cabo Frio, Brazil (A.S.); Centre for Data Analytics, Bond University, Gold Coast, Australia (S.E.S.); Siemens Healthineers AG, Erlangen, Germany (I.B.); and Siemens Medical Solutions USA, Malvern, Pa (G.K.).
Background Deep learning (DL) methods can improve accelerated MRI but require validation against an independent reference standard to ensure robustness and accuracy. Purpose To validate the diagnostic performance of twofold-simultaneous-multislice (SMSx2) twofold-parallel-imaging (PIx2)-accelerated DL superresolution MRI in the knee against conventional SMSx2-PIx2-accelerated MRI using arthroscopy as the reference standard. Materials and Methods Adults with painful knee conditions were prospectively enrolled from December 2021 to October 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!