Rupture fronts can cause fault displacement, reaching speeds up to several ms(-1) within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639853PMC
http://dx.doi.org/10.1038/srep16112DOI Listing

Publication Analysis

Top Keywords

flash weakening
20
amorphous carbon
12
fast-moving dislocations
8
nanograins amorphous
8
flash
5
weakening
5
dislocations trigger
4
trigger flash
4
weakening carbonate-bearing
4
carbonate-bearing faults
4

Similar Publications

Through detailed experimental and modeling activities, this paper investigates the origin of the temperature dependence of the Erase operation in 3D nand flash arrays. First of all, experimental data collected down to the cryogenic regime on both charge-trap and floating-gate arrays are provided to demonstrate that the reduction in temperature makes cells harder to Erase irrespective of the nature of their storage layer. This evidence is then attributed to the weakening, with the decrease in temperature, of the gate-induced drain leakage (GIDL) current exploited to set the electrostatic potential of the body of the nand strings during Erase.

View Article and Find Full Text PDF

Synergistic Modulation of Orientation and Steric Hindrance Induced by Alkyl Chain Length in Ammonium Salt Passivator Toward High-performance Inverted Perovskite Solar Cells and Modules.

Adv Mater

January 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China.

Organic ammonium salts are extensively utilized for passivating surface defects in perovskite films to mitigate trap-assisted nonradiative recombination. However, the influence of alkyl chain length on the molecular orientation and spatial steric hindrance of ammonium salt remains underexplored, hindering advancements in more effective passivators. Here, a series of organic ammonium salts is reported with varying alkyl chain lengths to passivate surface defects and optimize band alignment.

View Article and Find Full Text PDF

Representing stimulus motion with waves in adaptive neural fields.

J Comput Neurosci

May 2024

Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA.

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing.

View Article and Find Full Text PDF

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing.

View Article and Find Full Text PDF

Stability of perpendicular magnetohydrodynamic shocks in materials with ideal and nonideal equations of state.

Phys Rev E

September 2023

Department of Physics and Astronomy and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627, USA and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627, USA.

Magnetized target fusion approach to inertial confinement fusion involves the formation of strong shocks that travel along a magnetized plasma. Shocks, which play a dominant role in thermalizing the upstream kinetic energy generated in the implosion stage, are seldom free from perturbations, and they wrinkle in response to upstream or downstream disturbances. In Z-pinch experiments, significant plasma instability mitigation was observed with pre-embedded axial magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!