Quantitative gait assessment is important in diagnosis and management of Parkinson's disease (PD); however, gait characteristics of a cohort are dispersed by patient physical properties including age, height, body mass, and gender, as well as walking speed, which may limit capacity to discern some pathological features. The aim of this study was twofold. First, to use a multiple regression normalization strategy that accounts for subject age, height, body mass, gender, and self-selected walking speed to identify differences in spatial-temporal gait features between PD patients and controls; and second, to evaluate the effectiveness of machine learning strategies in classifying PD gait after gait normalization. Spatial-temporal gait data during self-selected walking were obtained from 23 PD patients and 26 aged-matched controls. Data were normalized using standard dimensionless equations and multiple regression normalization. Machine learning strategies were then employed to classify PD gait using the raw gait data, data normalized using dimensionless equations, and data normalized using the multiple regression approach. After normalizing data using the dimensionless equations, only stride length, step length, and double support time were significantly different between PD patients and controls (p < 0.05); however, normalizing data using the multiple regression method revealed significant differences in stride length, cadence, stance time, and double support time. Random Forest resulted in a PD classification accuracy of 92.6% after normalizing gait data using the multiple regression approach, compared to 80.4% (support vector machine) and 86.2% (kernel Fisher discriminant) using raw data and data normalized using dimensionless equations, respectively. Our multiple regression normalization approach will assist in diagnosis and treatment of PD using spatial-temporal gait data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2015.2450232 | DOI Listing |
J Infect Dev Ctries
December 2024
Federal University of São João Del Rei, Dona Lindu Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil.
Introduction: We assessed the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated socio-occupational factors among delivery riders from a Brazilian city at two time points during the pandemic.
Methodology: Surveys for antibody and viral RNA testing were conducted from November 2020 to January 2021, and from March to May 2021 in a group of 117 delivery riders. A questionnaire on socio-occupational characteristics and coronavirus disease 2019 (COVID-19) preventive measures was completed.
BMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Qiaokou District, Wuhan City, 430030, China.
Objective: Understanding healthcare-seeking propensity is crucial for optimizing healthcare utilization, especially for patients with chronic conditions like hypertension or diabetes, given their substantial burden on healthcare systems globally. This study aims to evaluate hypertensive or diabetic patients' healthcare-seeking propensity based on the severity of symptoms, categorizing symptoms as either major or minor. It also explores factors influencing healthcare-seeking propensity and examines whether healthcare-seeking propensity affects healthcare utilization and preventable hospitalizations.
View Article and Find Full Text PDFBMC Public Health
January 2025
School of Public Health, Southeast University, Nanjing. 87 Dingjiaqiao Road, Nanjing, China.
Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!