A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. | LitMetric

QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth.

Colloids Surf B Biointerfaces

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada. Electronic address:

Published: December 2015

Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to investigate initial adhesion and subsequent biofilm growth of wild-type Pseudomonas aeruginosa PAO1 and a pili-deficient (ΔpilA) mutant PAO1 strain. Clean, sterilized, silica-coated QCM-D crystals were pre-coated with lysogeny broth (LB), seeded with a PAO1 strain and allowed to grow for 20 h at 37 °C in fresh LB injected at 100 μL/min. QCM-D signals obtained for the wild-type PAO1 strain during the seeding period depict a large positive frequency shift that returns to baseline after ~20 min that is absent in the ΔpilA mutants, suggesting a dynamic pili-mediated attachment event for the wild-type PAO1 strain. During the subsequent growth period, significant and characteristic differences in the acquired QCM-D signals were observed between the wild-type and the ΔpilA mutant. Confocal laser scanning microscopy (CLSM) of the biofilm on the crystal surface showed that these differences could not be explained by differences in the extent of biofilm growth alone. When interpreted according to a coupled resonance model, the QCM-D observations suggest that pili are essential for coupling the developing biomass to the sensor surface. Total internal reflection fluorescence microscopy (TIRF) supports the hypothesis that the characteristic QCM-D signal is indicative of a dynamic attachment event, mediated by pili cell surface appendages pulling the wild-type PAO1 closer to the surface during the seeding period. We show that QCM-D offers direct, non-disruptive, in situ measurements of biofilm-substrate attachment. This technique has the potential to improve the current understanding of biofilm formation phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.10.032DOI Listing

Publication Analysis

Top Keywords

pao1 strain
16
biofilm growth
12
wild-type pao1
12
qcm-d
8
pseudomonas aeruginosa
8
Δpila mutant
8
qcm-d signals
8
seeding period
8
attachment event
8
biofilm
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!