The process of measurement can modify the state of a quantum system and its subsequent evolution. Here, we demonstrate the control of quantum tunneling in an ultracold lattice gas by the measurement backaction imposed by the act of imaging the atoms, i.e., light scattering. By varying the rate of light scattering from the atomic ensemble, we show the crossover from the weak measurement regime, where position measurements have little influence on tunneling dynamics, to the strong measurement regime, where measurement-induced localization causes a large suppression of tunneling--a manifestation of the quantum Zeno effect. Our study realizes an experimental demonstration of the paradigmatic Heisenberg microscope and sheds light on the implications of measurement on the coherent evolution of a quantum system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.140402 | DOI Listing |
Phys Rev Lett
December 2024
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
The dynamics of open quantum systems can be simulated by unraveling it into an ensemble of pure state trajectories undergoing nonunitary monitored evolution, which has recently been shown to undergo measurement-induced entanglement phase transition. Here, we show that, for an arbitrary decoherence channel, one can optimize the unraveling scheme to lower the threshold for entanglement phase transition, thereby enabling efficient classical simulation of the open dynamics for a broader range of decoherence rates. Taking noisy random unitary circuits as a paradigmatic example, we analytically derive the optimum unraveling basis that on average minimizes the threshold.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
Monitored random circuits, consisting of alternating layers of entangling two-qubit gates and projective single-qubit measurements applied to some fraction p of the qubits, have been a topic of recent interest. In particular, the resulting steady state exhibits a phase transition from highly correlated states with "volume-law" entanglement at p
Nat Commun
May 2023
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD, 20742, USA.
Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems.
View Article and Find Full Text PDFEntropy (Basel)
September 2022
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230039, China.
In this paper, quantum correlation (QC) swapping between two Werner-like states, which are transformed from Werner states undergoing local and nonlocal unitary operations, are studied. Bell states measures are performed in the middle node to realize the QC swapping and correspondingly final correlated sates are obtained. Two different QC quantifiers, i.
View Article and Find Full Text PDFPhys Rev E
May 2022
Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
We investigate a tight-binding quantum walk on a graph. Repeated stroboscopic measurements of the position of the particle yield a measured "trajectory," and a combination of classical and quantum mechanical properties for the walk are observed. We explore the effects of the measurements on the spreading of the packet on a one-dimensional line, showing that except for the Zeno limit, the system converges to Gaussian statistics similarly to a classical random walk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!