AI Article Synopsis

  • The study investigated the long-term impact of muscle fitness, specifically leg power, on cognitive changes in healthy older twins over a 10-year period.
  • The researchers utilized a comprehensive methodology, including linear regression and neuroimaging, to analyze the relationship between physical fitness and cognitive performance while controlling for various health and lifestyle factors.
  • Results showed a significant protective link between leg power and cognitive decline, indicating that higher muscle fitness may positively influence brain health over time.

Article Abstract

Background: Many observational studies have shown a protective effect of physical activity on cognitive ageing, but interventional studies have been less convincing. This may be due to short time scales of interventions, suboptimal interventional regimes or lack of lasting effect. Confounding through common genetic and developmental causes is also possible.

Objectives: We aimed to test whether muscle fitness (measured by leg power) could predict cognitive change in a healthy older population over a 10-year time interval, how this performed alongside other predictors of cognitive ageing, and whether this effect was confounded by factors shared by twins. In addition, we investigated whether differences in leg power were predictive of differences in brain structure and function after 12 years of follow-up in identical twin pairs.

Methods: A total of 324 healthy female twins (average age at baseline 55, range 43-73) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) at two time points 10 years apart. Linear regression modelling was used to assess the relationships between baseline leg power, physical activity and subsequent cognitive change, adjusting comprehensively for baseline covariates (including heart disease, diabetes, blood pressure, fasting blood glucose, lipids, diet, body habitus, smoking and alcohol habits, reading IQ, socioeconomic status and birthweight). A discordant twin approach was used to adjust for factors shared by twins. A subset of monozygotic pairs then underwent magnetic resonance imaging. The relationship between muscle fitness and brain structure and function was assessed using linear regression modelling and paired t tests.

Results: A striking protective relationship was found between muscle fitness (leg power) and both 10-year cognitive change [fully adjusted model standardised β-coefficient (Stdβ) = 0.174, p = 0.002] and subsequent total grey matter (Stdβ = 0.362, p = 0.005). These effects were robust in discordant twin analyses, where within-pair difference in physical fitness was also predictive of within-pair difference in lateral ventricle size. There was a weak independent effect of self-reported physical activity.

Conclusion: Leg power predicts both cognitive ageing and global brain structure, despite controlling for common genetics and early life environment shared by twins. Interventions targeted to improve leg power in the long term may help reach a universal goal of healthy cognitive ageing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789972PMC
http://dx.doi.org/10.1159/000441029DOI Listing

Publication Analysis

Top Keywords

leg power
28
cognitive ageing
24
muscle fitness
12
cognitive change
12
shared twins
12
brain structure
12
power predicts
8
cognitive
8
predicts cognitive
8
female twins
8

Similar Publications

The long-lasting impact of high-intensity training via collaborative care in patients with schizophrenia: A 5-year follow-up study.

Schizophr Res

December 2024

Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway; Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. Electronic address:

Unlabelled: Although exercise is medicine for outpatients with schizophrenia, it is unclear if one-year adherence-supported exercise leads to a "tipping point", at which the exercise becomes a routine manifested as life-long training in the patient group.

Methods: Forty-eight outpatients (28 men/20 women: 35 ± 11 (mean ± SD) years) with schizophrenia (ICD-10: F20-29) were randomised to: 1) collaborative care group (TG), performing aerobic interval (AIT; 4 × 4-min treadmill walking/running at ∼90 % peak heart rate) and leg press maximal strength training (MST; 4 × 4 repetitions at ∼90 % maximal strength [1RM]) 2d·wk. for 1-year, supported by transportation and training supervision; or 2) control group (CG).

View Article and Find Full Text PDF

Unlabelled: This study examines how power training affects estimated bone strength, revealing that females benefit more than males, especially in the upper limbs (radius). These findings highlight the importance of designing sex-specific exercise programs to enhance bone health. Further research is needed to optimize training duration and address site-specific differences.

View Article and Find Full Text PDF

Background/objectives: This study aims to investigate the daily variations in upper and lower body power performance in adolescent volleyball players.

Methods: The sample consisted of 50 young male volleyball players (14.12 ± 0.

View Article and Find Full Text PDF

Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction.

J Funct Morphol Kinesiol

December 2024

Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA.

Blood flow restriction (BFR) is a popular resistance exercise technique purported to increase metabolic stress and augment training adaptations over time. However, short-term use may lead to acute neuromuscular fatigue and higher exertion ratings. The purpose of the current study was to examine acute physiological responses to low-load resistance exercise utilizing BFR compared to higher-load, non-BFR resistance exercise.

View Article and Find Full Text PDF

We present a comprehensive overview of the commissioning process and initial results of a synchrotron beamline dedicated to atomic, molecular, and optical sciences at the BL-5 undulator port of the Indus-2 synchrotron facility, Raja Ramanna Center for Advanced Technology, Indore, India. The beamline delivers a photon flux of ∼1012 photons/s with high resolving power (∼10 000) over an energy range of 6-800 eV, making it suitable for high-resolution spectroscopy in atomic, molecular, and optical science. The energy tunability from vacuum ultraviolet to soft x-ray (6-800 eV) is achieved through a varied line spacing plane grating monochromator with four gratings: very low energy (VLEG), low energy (LEG), medium energy (MEG), and high energy (HEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!