Accurate segmentation of abdominal organs is a key step in developing a computer-aided diagnosis (CAD) system. Probabilistic atlas based on human anatomical structure, used as a priori information in a Bayes framework, has been widely used for organ segmentation. How to register the probabilistic atlas to the patient volume is the main challenge. Additionally, there is the disadvantage that the conventional probabilistic atlas may cause a bias toward the specific patient study because of the single reference. Taking these into consideration, a template matching framework based on an iterative probabilistic atlas for liver and spleen segmentation is presented in this paper. First, a bounding box based on human anatomical localization, which refers to the statistical geometric location of the organ, is detected for the candidate organ. Then, the probabilistic atlas is used as a template to find the organ in this bounding box by using template matching technology. We applied our method to 60 datasets including normal and pathological cases. For the liver, the Dice/Tanimoto volume overlaps were 0.930/0.870, the root-mean-squared error (RMSE) was 2.906mm. For the spleen, quantification led to 0.922 Dice/0.857 Tanimoto overlaps, 1.992mm RMSE. The algorithm is robust in segmenting normal and abnormal spleens and livers, such as the presence of tumors and large morphological changes. Comparing our method with conventional and recently developed atlas-based methods, our results show an improvement in the segmentation accuracy for multi-organs (p<0.00001).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2015.10.007DOI Listing

Publication Analysis

Top Keywords

probabilistic atlas
20
liver spleen
8
based human
8
human anatomical
8
template matching
8
bounding box
8
segmentation
5
probabilistic
5
atlas
5
segmentation liver
4

Similar Publications

Background: Correct information is an essential tool to guide thoughts, attitudes, daily choices or more important decisions such as those regarding health. Today, a huge amount of information sources and media is available. Increasing possibilities of obtaining data also require understanding and positioning skills, particularly the ability to navigate the ocean of information and to choose what is best without becoming overwhelmed.

View Article and Find Full Text PDF

Adaptive behavior in complex environments requires integrating visual perception with memory of our spatial environment. Recent work has implicated three brain areas in posterior cerebral cortex - the place memory areas (PMAs) that are anterior to the three visual scene perception areas (SPAs) - in this function. However, PMAs' relationship to the broader cortical hierarchy remains unclear due to limited group-level characterization.

View Article and Find Full Text PDF

Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!