(13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.

J Phys Chem B

Polymer Laboratory and ‡Chemical Physics Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.

Published: December 2015

Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b09859DOI Listing

Publication Analysis

Top Keywords

13c nmr
16
molecular order
8
mesophase properties
8
find molecular
8
shape mesogen
8
smectic smectic
8
order
5
smectic
5
13c
4
nmr studies
4

Similar Publications

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Fullerenes are statically pleasant species featuring symmetric cages, which can be modified upon reduction. Here, we theoretically account for the variation of 13C-NMR patterns in C60 and C70 upon six-fold reduction and the overall variation of the enabled shielding/deshielding regions induced by π and σ electrons according to different orientations of the external field and the related anisotropy. Our results show a significant modification of the chemical shift given by the main variation of the σ33 (or δ33) shielding component under the principal axis system (PAS) of the chemical shift anisotropy (CSA) at the representative carbon nucleus.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Seventeen 3-alkylaminoquinoxaline-2(1)-thiones and 3-alkyloxyquinoxaline-2(1)-thiones were prepared by a novel thionation protocol from the readily available quinoxaline-2,3-dione in excellent overall yields. This protocol starts with the chlorination of dione using thionyl chloride to give 2,3-dichloroquinoxaline followed by the reaction with equimolar amounts of -nucleophiles (primary amines and secondary amines) or -nucleophiles (phenols and alcohols) to principally afford 2-alkanamino-3-chloroquinoxalines or 2-alkyloxy-3-chloroquinoxalines, respectively. The chloroquinoxalines reacted with the thionation reagent -cyclohexyl dithiocarbamate cyclohexyl ammonium salt in ethanol under reflux to principally give the corresponding quinoxalin-2-yl cyclohexylcarbamodithioate that finally rearranges to give the corresponding thiones in 76-93% overall yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!