Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations.

Sci Total Environ

Departamento de Mineralogía y Petrología, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain.

Published: January 2016

Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp-lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp-lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp-lime mixes. This study has demonstrated that hemp-lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.10.141DOI Listing

Publication Analysis

Top Keywords

hemp-lime renders
16
long-term durability
8
areas mediterranean
8
mediterranean tropical
8
tropical semi-arid
8
bio-receptivity material
8
hemp-lime
5
predicting long-term
4
durability
4
durability hemp-lime
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!