A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of Ultracold Molecule Formation Using Shaped Nanosecond Frequency Chirps. | LitMetric

Enhancement of Ultracold Molecule Formation Using Shaped Nanosecond Frequency Chirps.

Phys Rev Lett

Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA.

Published: October 2015

We demonstrate that judicious shaping of a nanosecond-time-scale frequency chirp can dramatically enhance the formation rate of ultracold (87)Rb(2) molecules. Starting with ultracold (87)Rb atoms, we apply pulses of frequency-chirped light to first photoassociate the atoms into excited molecules and then, later in the chirp, deexcite these molecules into a high vibrational level of the lowest triplet state a (3)Σ(u)(+). The enhancing chirp shape passes through the absorption and stimulated emission transitions relatively slowly, thus increasing their adiabaticity, but jumps quickly between them to minimize the effects of spontaneous emission. Comparisons with quantum simulations for various chirp shapes support this enhancement mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.115.173003DOI Listing

Publication Analysis

Top Keywords

enhancement ultracold
4
ultracold molecule
4
molecule formation
4
formation shaped
4
shaped nanosecond
4
nanosecond frequency
4
frequency chirps
4
chirps demonstrate
4
demonstrate judicious
4
judicious shaping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!