Glycation, the non-enzymatic binding of glucose to free amino groups of an amino acid, yields irreversible heterogeneous compounds known as advanced glycation end products. Those products play a significant role in diabetic complications. In the present article we briefly discuss the contribution of advanced glycation end products to the pathogenesis of diabetic complications, such as atherosclerosis, diabetic retinopathy, nephropathy, neuropathy, and wound healing. Then we mention the various mechanisms by which polyphenols inhibit the formation of advanced glycation end products. Finally, recent supporting documents are presented to clarify the inhibitory effects of polyphenols on the formation of advanced glycation end products. Phytochemicals apply several antiglycation mechanisms, including glucose metabolism, amelioration of oxidative stress, scavenging of dicarbonyl species, and up/down-regulation of gene expression. To utilize polyphenols in order to remedy diabetic complications, we must explore, examine and clarify the action mechanisms of the components of polyphenols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0035-1558086 | DOI Listing |
Biol Pharm Bull
March 2025
Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan.
We examined whether the glucose levels and awareness of individuals without diabetes changed after using a sensor-based intermittently scanned continuous glucose monitoring (isCGM) system in their daily lives. Japanese individuals without a diabetes diagnosis wore the isCGM system while maintaining a normal lifestyle during the baseline period. A certified diabetes educator coached them on how to improve their lifestyle based on information from sensor data, food journals, and body composition.
View Article and Find Full Text PDFBioresour Technol
March 2025
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; National Circular Economy Engineering Laboratory, Shanghai 201620, People's Republic of China. Electronic address:
Sawdust is a by-product of wood processing and it was rapidly humified with KSO under alkaline-thermal synergistic activation to produce a fulvic-like-acid (FLA) organic fertilizer (SFOF) in this study. The optimum conditions were KSO: KOH mass ratio of 1:2 and 150℃, meanwhile FLA yield could reach 180.3 mg/g in 2 h.
View Article and Find Full Text PDFFood Chem
March 2025
Grupo de Química y Funcionalidad de Carbohidratos y Derivados, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Popped grains, subjected to high temperatures (180 to 310 °C), may undergo the Maillard reaction (MR). This study, for the first time, assessed MR indicators in popped sorghum and maize using two methods: traditional hot salt (310 °C) and the industrial hot air process (210 °C), at initial (furosine), intermediate (Hydroxymethylfurfural "HMF") and advanced stages (browning index), while monitoring changes in carbohydrates and color parameters (L*, a*, b*, ΔE). A browner color was observed in popped grains, with a higher ΔE in the hot salt treatments which showed the highest furosine (37.
View Article and Find Full Text PDFFood Funct
March 2025
Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830, Zaragoza, Spain.
Apples ( Borkh.) are one of the most consumed fruits around the world with a high production of peels as wastes and by-products. In this work, peels from different commercial and local apple samples are explored as a source of phenolic bioactive compounds that could be directly related to the prevention of type 2 diabetes.
View Article and Find Full Text PDFJ Agric Food Chem
March 2025
Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States.
Both dietary and endogenous reactive carbonyl species, such as methylglyoxal (MGO) and glyoxal (GO), react with proteins to generate advanced glycation end products (AGEs), which contribute to metabolic diseases. However, accurately determining individual AGEs in biological samples remains challenging due to the lack of standardized methods. In this study, we optimized and detailed procedures for AGE digestion using enzyme cocktails and separation and detection via high-resolution LC-MS/MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!