Electric-Field Control of the Orbital Occupancy and Magnetic Moment of a Transition-Metal Oxide.

Phys Rev Lett

Max Planck Institute of Microstructure Physics, Weinberg 2D-06120 Halle, Germany; Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom; and CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, via Cinthia I-80126 Napoli, Italy.

Published: October 2015

By using soft-x-ray linear and magnetic dichroism on La_{0.825}Sr_{0.175}MnO_{3}/PbZr_{0.2}Ti_{0.8}O_{3} ferromagnetic-ferroelectric heterostructures we demonstrate a nonvolatile modulation of the Mn 3d orbital anisotropy and magnetic moment. X-ray absorption spectroscopy at the Mn L_{2,3} edges shows that the ferroelectric polarization direction modifies the carrier density, the spin moment, and the orbital splitting of t_{2g} and e_{g} Mn 3d states. These results are consistent with polar distortions of the oxygen octahedra surrounding the Mn ions induced by the switching of the ferroelectric polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.115.157401DOI Listing

Publication Analysis

Top Keywords

magnetic moment
8
ferroelectric polarization
8
electric-field control
4
control orbital
4
orbital occupancy
4
occupancy magnetic
4
moment transition-metal
4
transition-metal oxide
4
oxide soft-x-ray
4
soft-x-ray linear
4

Similar Publications

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

In this paper the finite-difference time-domain general vector auxiliary differential equation method [Opt. Express14, 8305 (2006)10.1364/OE.

View Article and Find Full Text PDF

Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.

View Article and Find Full Text PDF

Effect of Hubbard U-corrections on the electronic and magnetic properties of 2D materials: a high-throughput study.

NPJ Comput Mater

January 2025

Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.

We conduct a systematic investigation of the role of Hubbard U corrections in electronic structure calculations of two-dimensional (2D) materials containing 3 transition metals. Specifically, we use density functional theory (DFT) with the PBE and PBE+U approximations to calculate the crystal structure, band gaps, and magnetic parameters of 638 monolayers. Based on a comprehensive comparison to experiments we first establish that the inclusion of the U correction worsens the accuracy for the lattice constants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!