We theoretically show that an interlayer bias voltage in the AB-stacked bilayer graphene nanoribbons with armchair edges induces an electric polarization along the ribbon. Both tight-binding and ab initio calculations consistently indicate that when the bias voltage is weak, the polarization shows opposite signs depending on the ribbon width modulo three. This nontrivial dependence is explained using a two-band effective model. A strong limit of the bias voltage in the tight-binding model shows either one-third or zero polarization, which agrees with the topological argument.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.115.156601DOI Listing

Publication Analysis

Top Keywords

bias voltage
16
electric polarization
8
bilayer graphene
8
graphene nanoribbons
8
interlayer bias
8
in-plane electric
4
polarization
4
polarization bilayer
4
nanoribbons induced
4
induced interlayer
4

Similar Publications

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.

View Article and Find Full Text PDF

High Gain, Low Voltage Solar-Blind Deep UV Photodetector Based on GaO/(AlGa)O/GaN nBp Heterojunction.

Small

January 2025

Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.

In this study an (AlGa)O barrier layer is inserted between β-GaO and GaN in a p-GaN/n-GaO diode photodetector, causing the dark current to decrease considerably, and device performance to improve significantly. The β-GaO/β-(AlGa)O/GaN n-type/Barrier/p-type photodetector achieves a photocurrent gain of 1246, responsivity of 237 A W, and specific detectivity of 5.23 × 10 cm Hz W under a bias of -20 V.

View Article and Find Full Text PDF

Alloying two-dimensional VSiN to realize an ideal half-metal towards spintronic applications.

Phys Chem Chem Phys

January 2025

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

Modulating the electronic properties of VSiN with high Curie temperature to realize an ideal half-metal is appealing towards spintronic applications. Here, by using first-principles calculations, we propose alloying the VSiN monolayer via substitutive doping of transition metal atoms (Sc-Ni, Y-Mo) at the V site. We find that the transition metal atom (except the Ni atom) doped VSiN systems have dynamical and thermal stability.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!