Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Massive accumulation of amyloid beta (Aβ) has been implicated as a pivotal event in the pathogenesis of Alzheimer's disease. The underlying mechanisms of Aβ-induced neurotoxicity include generation of reactive oxidative species (ROS), inflammation, and neurons loss. Allopregnano-lone (APα), a neurosteroid derive from neuroactive progesterone, has been demonstrated to have neuroprotective properties in vivo and vitro. In the present study, the effects of APα on oxidative damage in Aβ25-35-treated pheochromocytoma (PC12) cells were investigated. Pretreatment of APα significantly attenuated Aβ25-35-induced neuronal death. APα decreased the intracellular ROS generation and reduced lipid peroxidation induced by Aβ25-35. In addition, APα treatment enhanced antioxidant enzyme superoxide dismutase (SOD) activity. This study demonstrates that APα exerts a protective effect against Aβ25-35-induced neurotoxicity in PC12 cells. The protective role of APα likely results from inhibition of oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612987 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!