Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637867 | PMC |
http://dx.doi.org/10.1038/srep16366 | DOI Listing |
iScience
March 2024
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
Graphene, known for its ultrahigh carrier mobility and broadband optical absorption, holds significant potential in optoelectronics. However, the carrier mobility of graphene on silicon substrates experienced a marked decrease due to surface roughness, phonon scattering affects. Here we report carrier mobility enhancement of graphene dielectric engineering.
View Article and Find Full Text PDFAnalyst
June 2023
Tyndall National Institute, University College Cork, Dyke Parade, Cork, Ireland.
This paper presents a novel approach for the fabrication of low cost Electrochemical-Surface Enhanced Raman Scattering (EC-SERS) sensing platforms. Laser Induced Graphene (LIG) electrodes were readily fabricated by direct laser writing of polyimide tapes and functionalized with silver nanoparticles (Ag NPs) to obtain hybrid Ag NPs - LIG electrodes suitable for EC-SERS analysis. Detection was achieved by coupling a handheld potentiostat with a Raman spectrograph, enabling measurement of SERS spectra of target analytes generated during voltage sweeps in the 0.
View Article and Find Full Text PDFIn this paper, we designed a surface-enhanced Raman scattering (SERS) substrate for graphene/Ag nanoparticles (Ag NPs) bonded multilayer film (MLF) using the hybrid nanostructures composed of graphene and plasmonic metal components with significant plasmonic electrical effects and unique optical characteristics. This paper achieved the advantages of efficient utilization of electromagnetic field and reduction of fluorescence background based on the electromagnetic enhancement activity of Ag NPs and unique physical/chemical properties of graphene with zero gap structures. Au/AlO was stacked periodically to construct MLF.
View Article and Find Full Text PDFJ Mol Model
August 2021
School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China.
First principles were used to investigate electronic properties of Au-doped graphene, Ag-doped graphene, and Cu-doped graphene and the effect of adsorption behavior of hydrogen sulfide (HS) molecule on their electronic properties. Doped graphene exhibits interesting electronic properties. The gap value of Ag-doped graphene is 0.
View Article and Find Full Text PDFRSC Adv
September 2019
Department of Sciences and Technology, Linköping University Campus Norrköping SE-601 74 Norrköping Sweden
High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!