A near-infrared sensor for cyanide ion (CN(-)) was developed via internal charge transfer (ICT). This sensor can selectively detect CN(-) either through dual-ratiometric fluorescence (logarithm of I414/I564 and I803/I564) or under various absorption (356 and 440 nm) and emission (414, 564 and 803 nm) channels. Especially, the proposed method can be employed to measure β-glucosidase by detecting CN(-) traces in commercial amygdalin samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637889PMC
http://dx.doi.org/10.1038/srep16528DOI Listing

Publication Analysis

Top Keywords

cyanide ion
8
measure β-glucosidase
8
ratiometric colorimetric
4
colorimetric near-infrared
4
near-infrared sensors
4
sensors multi-channel
4
multi-channel detection
4
detection cyanide
4
ion application
4
application measure
4

Similar Publications

The electrochemically mediated cyanation/annulation process with in situ cyanide ion generation from NH4SCN and multi-step oxidative construction of CN-functionalized heterocycles from easily available α-amino esters and pyridine-2-carbaldehydes has been discovered. Depending on the nature of the α-amino ester, 1-cyano-imidazo[1,5-a]pyridine-3-carboxylates, 3-alkyl- and 3-aryl-imidazo[1,5-a]pyridines-1-carbonitriles, and the first reported 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitriles were obtained. The electrosynthesis is carried out in an undivided electrochemical cell under constant current conditions.

View Article and Find Full Text PDF

Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au.

Mikrochim Acta

January 2025

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.

A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.

View Article and Find Full Text PDF

The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.

View Article and Find Full Text PDF

We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!