A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming. | LitMetric

Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming.

Cell Metab

The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. Electronic address:

Published: January 2016

The mechanisms of somatic cell reprogramming have been revealed at multiple levels. However, the lack of tools to monitor different reactive oxygen species (ROS) has left their distinct signals and roles in reprogramming unknown. We hypothesized that mitochondrial flashes (mitoflashes), recently identified spontaneous bursts of mitochondrial superoxide signaling, play a role in reprogramming. Here we show that the frequency of mitoflashes transiently increases, accompanied by flash amplitude reduction, during the early stages of reprogramming. This transient activation of mitoflashes at the early stage enhances reprogramming, whereas sustained activation impairs reprogramming. The reprogramming-promoting function of mitoflashes occurs via the upregulation of Nanog expression that is associated with decreases in the methylation status of the Nanog promoter through Tet2 occupancy. Together our findings provide a previously unknown role for superoxide signaling mediated epigenetic regulation in cell fate determination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2015.10.002DOI Listing

Publication Analysis

Top Keywords

transient activation
8
activation mitoflashes
8
somatic cell
8
cell reprogramming
8
superoxide signaling
8
reprogramming
7
mitoflashes
5
mitoflashes modulates
4
modulates nanog
4
nanog early
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!